
Overcoming Limitations of Sampling
for Aggregation Queries

©2004, UFL-COE-ECE

CIS 6930 CIS 6930 –– Approximate Query Processing Approximate Query Processing
Paper Presentation Paper Presentation –– Spring Spring –– 2004 2004 -- Instructor: Dr. Alin Dobra

Presented by: Andréa Matsunaga (ammatsun@ufl.edu)

Authors: Surajit Chaudhuri,
Gautam Das,
Mayur Datar,
Rajeev Motwani, and
Vivek R. Narasayya

ICDE 2001

�

©2004, ECE – COE – UF By: Andréa Matsunaga

Outline

� Introduction
� The need for Approximate Query Processing

� Issues with uniform sampling
� Solutions

� Outlier-indexes
� Exploiting workload information

� Experimental results

�

©2004, ECE – COE – UF By: Andréa Matsunaga

Introduction

� Data analysis over large data is hard
� Data analytics often do not need exact answers

� “ballpark” estimates are enough

� Examples
� On Line Analytical Processing (OLAP)/Decision

Support
� E.g. what is the percent increase in the sales of Windows XP

over last year in California?

� Data Mining
� Building models (e.g. decision trees) does not require

precise counts

� Focus on Aggregate queries

�

©2004, ECE – COE – UF By: Andréa Matsunaga

� Outlier-indexes

� Exploiting workload information

Issues

� Limitations of uniform sampling in
answering Aggregation queries:
� Data skew (large data variance)

� Low selectivity and small groups

�

©2004, ECE – COE – UF By: Andréa Matsunaga

Data Skew Effect Example

Relation R

1
.
.
.
.
.
.
.
.
1

K C

(N=10000 tuples)

1000

99%

1%

Sum(C) = 109,900

1% uniform sample
(100 tuples)
Extrapolate

(multiply by 100)

No tuple with 1000:
Est(SUM(C))=10,000

2 or more tuples with 1000:
Est(SUM(C))=209,800
Est(SUM(C))=309,700

.

.

1 tuple with 1000:
Est(SUM(C))=109,900

R-9900
1P = = 0.37N

100

R-100
99

Probability of 0.63 to get large error in estimate!!!

Severe underestimate
if outlier not in sample

Severe overestimate
if outlier not in sample

�

©2004, ECE – COE – UF By: Andréa Matsunaga

Theorem 1

�
∈

�
�

�
�
�

�=
Uy

ie

i

y
n

N
Y �

=

=
N

i
iyY

1

N

n

n

NS −⋅= 1ε

• R = Relation of size N
• {y1, y2, …, yN} = Set of values associated with the tuples in the relation
• U = uniform sample of yi’s of size n

•

• with standard error:

• where S = standard deviation

= Unbiased estimator of the actual sum

1

)(
1

2
__

−

−
=
�

=

N

Yy
S

N

i
i

�

©2004, ECE – COE – UF By: Andréa Matsunaga

Theorem 1 - Proof

�
∈

�
�

�
�
�

�=
Uy

ie

i

y
n

N
Y �

=

=
N

i
iyY

1

n

NS
YVar e ==)(ε

1

)(
)(1

2
__

−

−
==
�

=

N

Yy
SyVar

N

i
i

i

Sn
n

N
yVar

n

N
y

n

N
VarYVar

Uy
i

Uy
ie

ii

⋅⋅��
�

�
��
�

�
=��

�

�
��
�

�
=��

�

�
�
�
�

�
�
�

�
�
�

�= ��
∈∈

2

2

2

2

)()(

Y
N

n
y

n

N
EiPy

n

N
Ey

n

N
EYE

N

i
i

N

i
Ui

Uy
ie

i

=��
�

�
��
�

� ⋅�
�

�
�
�

�=��
�

�
��
�

� ⋅�
�

�
�
�

�=��
�

�
�
�
�

�
�
�

�
�
�

�= ���
==∈ 11

)()(

Properties of variance:
•
•

(For independent random variables)

)()(2 XVaraaXVar =
�� =

i
i

i
i XVarXVar)()(

Properties of expectation:
• aaE =)(

�

©2004, ECE – COE – UF By: Andréa Matsunaga

� To handle data skew in a aggregation
query

� The idea:
� Separate the outliers (RO) from the rest of the

data or non-outliers (RNO) into an outlier index
� Keep a uniform random sample of the

remaining data

� Use outlier index as well as random sample
to answer queries

Solution 1: Outlier Indexing

�

©2004, ECE – COE – UF By: Andréa Matsunaga

Outlier Indexing Implementation

R

Query processingPre-processing

RO

RNO

(1) Determine the outliers

RNO
sample

(2) Sample
non-outliers

Query A1

(3) Aggregate
outliers

Query & extrapolate
A2

(4) Aggregate
non-outliers

+ A

(5) Combine
aggregates

Note: Since DB content change over time, selection of outliers indexes and samples
should be refreshed appropriately.

	

©2004, ECE – COE – UF By: Andréa Matsunaga

Outlier Selection: Definition 1

• For any sub-relation R’ (R’ ⊂ R)

• ε(R’) = standard error in estimating the sum of values in R’ (uniform
sampling followed by extrapolation)

• An optimal outlier-index RO(R,C,τ) is defined as a sub-relation RO ⊂ R:
• | RO | ≤ τ
• ε(R\RO) = minR’ ⊂ R, |R’|≤τ{ε(R\R’)}

		

©2004, ECE – COE – UF By: Andréa Matsunaga

Outlier Selection: Theorem 2

• Consider a multiset R = {y1, y2, …, yN} where the yi’s are in sorted
order.

• Let RO ⊂ R be the subset such that:
• | RO | ≤ τ
• S(R\RO) = minR’ ⊂ R, |R’|≤τ{S(R\R’)}

• Then exists some 0 ≤ τ’ ≤τ such that
RO = {yi | 1 ≤ i ≤ τ’} ∪ { yi | (N+τ’+1-τ) ≤ i ≤ N}

	�

©2004, ECE – COE – UF By: Andréa Matsunaga

Outlier Selection: Algorithm

1) Read the values in column C of the relation R. Let {y1, y2, …, yN}
be the sorted order of the values appearing in C (each value
corresponds to a tuple).

2) For i = 1 to τ+1, compute
E(i) = S({yi, yi+1, …, yN-τ+i-1}).

3) Let i’ be the value of i where E(i) takes its minimum value.
Then the outlier-index is the tuples that correspond to the set of
values

{yj | 1 ≤ j ≤ τ’} ∪ {yj | (N+τ’+1-τ) ≤ j ≤ N} where τ’ = i’-1

• The algorithm depends on computing standard deviations
• Standard deviations computed in O(1) time for insertions and deletions

(e.g. E(i+1) can be computed from E(i), yi and yN-τ+1).

	�

©2004, ECE – COE – UF By: Andréa Matsunaga

Outlier Selection: Example

1

1000

99% = 9900 tuples 1% = 100 tuples

Relation R
_
Y = 10.99
Y = 109,900
N = 10,000 tuples

For τ = 100:
E(1) = 9.99
E(2) = 14.09
E(3) = 17.25
.
.

E(101) = 99.9

E(1)

E(101)

E(2) …

Outliers!!!

CREATE VIEW c_otl_idx AS
SELECT * from R
WHERE (C > 1000)

	�

©2004, ECE – COE – UF By: Andréa Matsunaga

Low Selectivity and Small Groups
Effect Example

Relation R
Sample

Query with low selectivity
Sample may not contain
even a single row
selected by the query

Query with group-by’s
Sample may not contain
even a single row that
belongs to the sub-relation

	�

©2004, ECE – COE – UF By: Andréa Matsunaga

� To handle low selectivity and small groups
� The idea:

� Use weighted sampling
� Sample more from subsets of data that are

small in size but are important (have high
usage).

� Exploit DB access pattern locality.

� Using pre-computed samples.

Solution 2: Exploiting Workload Information

	�

©2004, ECE – COE – UF By: Andréa Matsunaga

Exploiting Workload Information

1) Workload Collection: obtain a workload consisting of representative queries
against the DB (e.g. Microsoft SQL Server Profiler).

2) Trace Query Patterns: analyze workload to obtain parsed information (e.g. the set
of selection conditions that are posed).

3) Trace Tuple Usage: The execution of the workload reveals additional information
on usage of specific tuples (e.g. frequency of access to each tuple). Since tracking
this information at the level of tuples can be expensive, it can be kept at coarser
granularity (e.g. on page-level). For the experiments, assumed that a tuple ti has
weight wi if the tuple ti is required to answer wi queries in the workload).

4) Weighted Sampling: Perform sampling by taking into account weights of tuples in
step 3. The probability to accept the sample is pi = n ⋅ wi’, where:

Need to store the normalized weight wi’ together with the tuple since its inverse
(multiplication factor) will be used to answer the aggregate query.

� Steps:

�
=

=
N

j
jii www

1

/'

	�

©2004, ECE – COE – UF By: Andréa Matsunaga

Exploiting Workload Information

� When weighted sampling based on workload
information works well?

� Access pattern of queries are local

� We have a workload that is a good representative of future
queries.

	�

©2004, ECE – COE – UF By: Andréa Matsunaga

Experimental Setup

� Platform: Dell Precision 610 system with a Pentium III Xeon 450 MHz
processor with 128 MB RAM and an external 23GB hard drive.

� Databases: 100MB TPC-R databases. TPC-R benchmark modified to
vary the degree of skew determined by the Zipfian parameter z5

distribution, since original data is generated from a uniform distribution.
� Workloads: random query generation program with sum aggregate

function.
� Parameters: (a) skew of the data (z) was varied over 1, 1.5, 2, 2.5, and

3 (b) the sampling fraction (f) was varied over a wide range from 1% to
100%, (c) the storage for the outlier-index was varied over 1%, 5%,
10%, and 20%; and (d) average over 3 runs.

� Techniques:USAMP: uniform sampling
WSAMP: weighted sampling
WSAMP+OTLIDX: weighted sampling + outlier-indexing

	�

©2004, ECE – COE – UF By: Andréa Matsunaga

Experimental Results

�

©2004, ECE – COE – UF By: Andréa Matsunaga

Experimental Results

�	

©2004, ECE – COE – UF By: Andréa Matsunaga

Experimental Results

��

©2004, ECE – COE – UF By: Andréa Matsunaga

Questions?

Thank you!

