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Abstract:


In this memo, we quantitatively analyze the performance and cost-efficiency of adiabatic (nearly thermodynamically reversible) computing, compared to ordinary (fully irreversible) computing, using a realistic physical model of computation that simultaneously takes all of the following factors into account:

1. Spacetime-proportional costs for hardware rental.
2. Costs proportional to amount of free energy reduction (or entropy generation).

3. Speed-of-light limit on communications latency in parallel algorithms

4. Scaling of parallel performance in 3-dimensional machine configurations.

5. Best-case and worst-case algorithmic (spacetime) overheads for reversible logic.
6. Quantum limits on flux density of entropy/information.

7. Non-zero frictional dissipation that scales with speed, as per adiabatic theorem.

8. Non-zero energy leakage or decay rates of real devices.

9. (Still in progress) Scaling of dissipation and cost of timing mechanisms

We believe that the only fundamental factor that the set of considerations listed does not include is the effect of gravity (as per general relativity) on the scaling of machine size.  However, this factor is not expected to become an important engineering consideration except in the very long-term future of computing.  In contrast, machines that are required to perform as well as possible in the face of the other constraints listed above are expected to appear already within the next 25-50 years.

A preliminary result from our analysis is that reversible computing will gradually become between ~1,000 and ~100,000 times as cost-effective as ordinary irreversible computing for desktop-scale applications as we follow the expected trends of development of logic device technology over the next 50 years.  This analysis leaves open the possibility that better general-purpose algorithms for reversible computation may someday be discovered, which would decrease the asymptotic worst-case bounds mentioned in item 5 above, and move us to the upper end of the advantage range.  

The model and analysis in the present memo expands on earlier models and analyses that have been studied previously by the author and others (see table 1).
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Table 1.  A sampling of some past theoretical work that can serve as a basis for studies of computer performance and cost-efficiency.  Checkmarks show factors explicitly addressed.  Perhaps surprisingly, none of the existing models address all of the fundamental (technology-independent) factors (listed above) that appear relevant for accurately assessing the ultimate capabilities of computers in the limiting nanotechnology, whatever that technology may be.  A contribution of this memo will be to combine, in a single model, all of the fundamental concerns that were dealt with separately in the author’s earlier work, and analyze the scalability of general algorithms and the cost-efficiency advantages of reversibility in the resulting model.  Sec. 5 begins the work of adding synchronization costs (3rd to last column) to the model; incorporating fault-tolerant quantum algorithms and the effect of gravity into the model is left for later.
1. The Model

The model comprises (is comprised of) several parts:

1. A generic (technology-independent) parameterized device model, representing individual bit-devices such as transistors or non-transistor-based logic gates.

2. A timing system model representing the mechanism used for logic synchronization and energy recycling.
3. A cost model representing the relative costs of devices and energy in a particular application context.

4. A reversible processing model that realistically characterizes the minimum worst-case and best-case performance of reversible implementations of arbitrary uniprocessor algorithms.
5. A multiprocessor scaling model that expands upon the earlier to derive asymptotic results for the scaling of parallel algorithms in three dimensions, taking communication limits into account.
1.1. Generic Device Model

An individual device is defined as any mechanism characterized by the following parameters, assumed to be roughly constant in any given technology.  (Our general notation is ABC for a variable expressing an amount of quantity A per unit of quantities B and C.)
1. Number bd of bits of internal logical state information

2. Number bdc of digital bits input/output from/to neighboring devices per cycle.  (We’ll assume that data transfers are reversible, ballistic, and occur at the speed of light, and any irreversibility only occurs in the transformations of internal device state.) This parameter is actually not used in the present analysis, but may figure in future analyses.
3. Entropy generation Sia for a fully-irreversible device operation, that erases all internal state information.  Note that Sia ≥ bd.  
4. Minimum time ti per cycle for a fully irreversible cycle
5. State-transition function Fd from old-state/input to new-state/output.

6. Standby entropy generation rate Sdt, due to energy leakage or structural decay.
7. Adiabatic entropy coefficient Sdcf or entropy generated per cycle per unit “quickness” (in this case, device operation cycle frequency) of adiabatic transitions taking place in devices that are actively processing information (as opposed to just statically storing it).
8. Physical (spatial) volume Vd.  Without loss of generality, we can assume that individual devices are roughly cube-shaped, with side length (d = Vd1/3.
9. Maximum entropy flux density SAt (rate of entropy per unit area) through the sides of the device.  This relates to the per-device performance of whatever cooling mechanisms are provided.
Devices are assumed to be capable of fully-adiabatic operation when Fd is an invertible (one-to-one) function.  In addition, devices are assumed to be capable of fully-irreversible operation where all the bits bd of state are transformed into entropy and ejected.
We will defer discussion of the timing system model until section 5.

1.2. Cost Model

Here are the parameters of the cost model:

1.  Cost of entropy generation $S.  This includes both the cost of free-energy supplied to the system, and the cost of rejecting entropy into the environment in the cooling system, including whatever additional entropy is generated by the cooling mechanism externally to the computer itself.
2.
Cost per device per unit time, $dt, due for example to system manufacturing cost amortized over the number of devices and the system’s lifetime, and opportunity costs due to alternative uses of the region of spacetime occupied by the device for other purposes.  Also includes maintenance costs per device.
1.3. Reversible Processing Model

In this model, we characterize the performance characteristics of reversible uniprocessor algorithms, compared to their irreversible variants.  These are stated in terms of the reversible equivalent of a single irreversible device operation.  Let a “run” be the average amount of reversible processing per irreversible device operation emulated.  Important characteristics of a run include:
1. The number f of fully-irreversible device operations replaced by a mostly-reversible computation ending with 1 fully-irreversible device operation.  The number of irreversible erasures is reduced by a factor f.  
2. The number of devices dr needed for the reversible algorithm.  This affects communications latencies between neighboring processing elements in a parallel system, as well as random-access latencies within individual elements.
3. The number of clock cycles cr for the reversible algorithm.
4. The number ar of actual fully-adiabatic device operations carried out in the reversible algorithm.
5. The spacetime Mr of the reversible algorithm, in terms of device cycles.  This may be different from drcr if the number of devices required is not constant over the course of the algorithm.
The best case for all of these performance characteristics comes when the computation to be performed is an inherently reversible one to begin with, in which case dr = cr = ar = Mr = 1, and air = ∞.  The worst case is when every device in the original algorithm performs a fully-irreversible transformation of its entire digital state on every cycle, and no additional information is available that would help us find an efficient reversible equivalent.  For this case, we will analyze the best overall system cost-efficiency that is achievable using known general-purpose irreversible-to-reversible emulation algorithms.
1.3. Multiprocessor Scaling Model

For an entire multiprocessor computer, we assume we wish to optimize overall cost-efficiency for performing a specific computational task many times repeatedly on a given piece of hardware (so that initialization costs can be amortized away).  We characterize the task in terms of the resources required to perform the task using the most cost-effective known fully-irreversible computation.  Parameters of the task therefore include
1. Maximum number of devices di required to hold state simultaneously over the course of the computation.
2. Number of cycles ci
3. Number of device-cycles for passive storage, Mi.  This may be different from dici if the number of devices in use varies over time.

4. Number of active irreversible operations ai.

For general-purpose computations, the design parameters we are free to explore include:


1.  Time per cycle tc for adiabatic device operation.

2. Average distance (p between centers of logically neighboring reversible processing elements (where each p.e. simulates one irreversible device)
3.  The choice of which reversiblization algorithm is used, and the parameters of the algorithm.

2. The Analysis

Time per cycle.  We have several lower bounds on tc:

1. It needs to be sufficient for random access within a processing element, i.e., tc ≥ cdr1/3(d.
2. It needs to be sufficient for communication to logically neighboring elements, i.e., tc ≥ c(p.  This is actually a strictly stronger condition than #1, since (p ≥ dr1/3(d.
3. It needs to be sufficient for entropy removal through the machine’s surface.  We now derive the quantitative form of this constraint. 
Each adiabatic operation produces Sdcf/tc entropy, and there are ar such operations per reversible processing element run, for arSdcf/tc entropy per processing element run from adiabatic operations.  In addition, there are Mr device cycles, each of which generates entropy Sdttc, for another MrSdttc.  At the end of the run, Sia/f more entropy is generated on average to irreversibly store the state for the next run.  The total entropy produced by the run is then Sr = arSdcf/tc + MrSdttc + Sia/f.  The total time taken for the run is tr = crtc.
Consider a column of pcol = di1/3 processing elements through the machine, operating in parallel.  The total entropy produced by the column over the course of the run is then Scol,r = pcolSr = pcol(arSdcf/tc + MrSdttc + Sia/f).  This cannot be greater than the entropy flux that can be removed from the column area Acol = (p2 over time tr, which is (p2SAtcrtc.  So we have the inequality:

pcol(arSdcf/tc + MrSdttc + Sia/f) ≤ (p2SAtcrtc.




(1)
Solving this for (p, we have:
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Alternatively, we can solve for tc.  First, we manipulate the inequality into the form of a quadratic polynomial in tc:


 (pcolMrSdt−(p2SAtcr)tc2 + pcoltcSia/f + pcolarSdcf ≤ 0



(2)
Note that since all these physical variables are always positive, the only way for the inequality to hold is for the coefficient a = pcolMrSdt−(p2SAtcr of tc2 to be negative, i.e., (p2SAtcr > pcolMrSdt.  This just expresses the obvious fact that the rate of entropy removal from the column has to be greater than the rate of entropy generation by leakage from the storage devices in use in the column.
Now, we can use the quadratic formula −b±(b2−4ac)1/2/2a to find the equality case:
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Since we know from the argument of the preceding paragraph that the coefficient a must be negative, and also that c = pcolarSdcf must be positive, the term 
4ac is negative, so b2−4ac is greater than b2, so the value of the radical is greater than b, so −b±(b2−4ac)1/2 is only negative (and thus tc positive) in the − case of the ±.  Larger values of tc make left-hand side of the earlier inequality (2) more negative, since the coefficient a is negative.  So, finally we have the real inequality for tc:
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Note that as (p increases to infinity, the expression simplifies to:
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which we can see is decreasing in (p.  Now, we had another lower bound on tc that depends on (c, where tc is increasing in (p, namely tc ≥ c(p.  So, as (p increases, there must be a point where the increasing bound becomes dominant over the decreasing bound.   This tells us a minimum tc that can be tolerated.  Above this level, a range of (p values are possible.
We can find this point by plugging in tc = c(p into the equality case of the original inequality (1), getting

pcol(arSdcf/c(p + MrSdtc(p + Sia/f) = (p2SAtcrc(p
pcol(arSdcf/c(p + MrSdtc(p + Sia/f) = (p3SAtcrc
pcol(arSdcf + MrSdtc2(p2 + c(pSia/f) = (p4SAtcrc2

(SAtcrc2)(p4 − (pcolMrSdtc2)(p2 − (pcolcSia/f)(p − (pcolarSdcf) = 0
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 EMBED Equation.3  [image: image6.wmf]
As we can see, this is a quartic (4th-order polynomial) equation.  As such, there exists a closed-form formula for its solutions, but this formula is too complex (many pages long) to be very convenient for analysis, so we will not pursue that direction further here.  Let us instead turn to the question of how to optimize overall cost-efficiency of the computation.

Irreversible Cost.  The total cost for each active device cycle in the original computation is given by:

$ia = (tiSdt + Sia)$S + ti$dt
where the first term covers the cost of entropy generation (subdivided into entropy generated by leakage from passive storage versus from active irreversible operations), and the second term refers to the rental cost of devices.


Note that the best case for reversibility will be if every device is active on every cycle.  Otherwise, if there are some passive devices, then reversibility only hurts cost-efficiency of those devices.  So, let us also consider the case where not all devices are necessarily active.


The total cost for the entire irreversible computation is then:




$i = (MitiSdt + aiSia)$S + Miti$dt

Reversible Cost.  First, let us consider the cost per active irreversible operation.  Again, we break this down into cost from entropy generation, and cost from spacetime usage.  We have:

$ria = (MrtcSdt + arSdcf/tc + Sia/f)$S + Mrtc$dt
Now, let us consider the whole computation, with its Mi device-cycles and ai active ops.

$r = (MiMrtcSdt + aiarSdcf/tc + aiSia/f)$S + MiMrtc$dt

Let us compare this expression term-by-term with the irreversible cost.  We have had the following effects on total cost:

1. We have increased the original leakage energy cost and the spacetime cost by a factor Mrtc/ti.

2. We have multiplied the original active energy term aiSia by a factor (arSdcf/tcSia + 1/f) which may be less than 1.  This is the only cost term that we may actually decrease.

Let us now simplify these expressions.  We do this by introducing some definitions:

α = ai/Mi – The activity factor of the original computation.  Note this may have been very small if the original computation was not so highly parallelized that every device was active on every cycle.

Rdt = Sdt$S/$dt – The leakage dominance ratio of the original computation.  That is, how much of the device cost per unit time for consists of leakage energy cost, compared to other costs that are proportional to passive device utilization.

tx = αSiaRdt/Sdt – The effective extra time per irreversible operation due to the irreversible energy costs.  This sounds confusing, but all it is saying is that we take the cost of the average entropy generation from irreversible operations, and express it in terms of the equivalent amount of spacetime cost for a leakage-free device.
With these definitions, we can now define the effective time per device-cycle in the irreversible machine as:


tidc = $i/Mi$dt = ti(1+Rdt) + tx
Let us do some more definitions:

sa = tc/ti – Adiabatic slowdown factor.  How many times slower is an adiabatic device operation, compared to a non-adiabatic one?

Rirr = tx/(ti(1+Rdt)) – Irreversibility cost ratio.  How much more expensive, proportionally, are device cycles in the computation on average due to the initial rate of irreversible device-operations (due to their entropy generation) compared to just passively storing a state in that device for that cycle (due to hardware costs and leakage).

Sra = Sdcf/tc – The entropy generated by a device operating reversibly and adiabatically over the amount of time for an adiabatic cycle.

Ra = Sia/Sra – The energy savings factor (usually greater than 1) of an individual adiabatic device-cycle, compared to an irreversible one, ignoring leakage energy costs.
Now, the normalized irreversible cost is Ni = 1 + Rirr, where the 1 represents the cost per device-cycle due to just hardware cost and leakage, and the Rirr represents some additional on top of this (per average device cycle) due to the energy cost of the irreversible operations that are happening.


In these terms, the normalized reversible cost is Nr = Mrs + (ar/Ra + 1/f)Rirr.


From all this, we can see that the effect of reversible operation is to reduce one cost component, the irreversibility cost ratio, diving it by a reversibility reduction factor Rr = 1/(ar/Ra + 1/f).  Meanwhile another, mutually exclusive cost component, the spacetime proportional cost, represented by 1 in the normalized formula, is increased by the factor B = Mrsa, the spacetime blowup factor.


The reversibility cost-efficiency advantage factor, Ar = (1 + Rirr)/(B + Rirr/Rr).  Re-expressing, this is
[image: image7.wmf]r

irr

irr

irr

r

irr

irr

r

R

R

B

R

R

R

R

B

R

A

1

1

1

1

1

+

+

=

+

+

=

.  Let Firr = Rirr/(1+Rirr) be the fraction of the initial cost that is due from irreversibility.  Then, Rirr = Firr/(1−Firr). Then, 1/Ar = Firr(B(1−Firr)/Firr + 1/Rr) = B(1−Firr) + Firr/Rr.  Let F$r = 1/Ar be this overall reversible cost fraction for reversibility.  

Our job is to minimize F$r and show the model parameters that allow it to be less than 1, and how its optimized value varies with the parameters of our model. 
F$r = B − FirrB + Firr/Rr = B + Firr(1/Rr − B).
OK, let’s look at it another way.  When we go to the reversible model, we’re increasing the spacetime proportional costs by an additive amount B−1.  Meanwhile, we’re subtracting Rirr(1−1/Rr) from the irreversibility costs.  So the total decrease in cost is Rirr(1−1/Rr) − B + 1.  Given fixed Rirr, we want the design to maximize the decrease in cost, therefore we want to maximize Rirr − Rirr/Rr − B + 1.  Eliminating the constants, we find we want to minimize Rirr/Rr + B.  Oh, wait, that was just our denominator from the reversibility cost-efficiency advantage factor Ar from earlier.
OK, let’s say we want to minimize B+Rirr/Rr  with respect to some design parameter x.  So, we set its derivative with respect to x equal to 0:  

∂B/∂x + Rirr ∂(1/Rr)/∂x = 0
∂(B)/∂x = −Rirr ∂(1/Rr)/∂x
For convenience, let Fr = 1/Rr = ar/Ra + 1/f.  So, the optimization criterion is:


∂xB = −Rirr ∂xFr.
Now, we can go to town, and start optimizing away design parameters.  First, let’s optimize in terms of tc.  Let’s expand out some of these expressions.


Mr/ti = −Rirr ∂(ar/Ra + 1/f)/∂tc

Mr/ti = −Rirrar ∂(Sra/Sia)/∂tc

(f does not depend on tc)

Mr/ti = − (Rirrar/Sia) ∂(Sdcf/tc)/∂tc

Mr/ti = (RirrarSdcf/Sia) tc−2

tc2 = RirrarSdcfti / SiaMr


[image: image8.wmf]r

ia

i

dcf

r

irr

c

M

S

t

S

a

R

t

=

.







(3)
This is the optimum choice for tc, given values for the other parameters, and assuming it satisfies the lower bounds on tc mentioned earlier.


This now suggests an effective overall optimization strategy.  Given the device and application parameters, various values of the reversible-algorithm parameters (n and k, in the case of Bennett’s algorithm) are selected.  For each selection, we calculate the optimum tc and the minimum tc (from the constraints), and select the greater of the two.  We plug this back into the overall advantage formula, and get a result.  


The variables that are computed directly from the algorithm parameters are: ar, Mr, f, and cr.

The independent variables that remain will be: (Rirrti), which appears in equation (3), (d, Sdcf, Sdt, Sia, SAt. 
3. Optimization Algorithm

A custom C++ program (in nearly plain C style) was written to perform the optimization roughly as outlined above.  The program is too long (14 pages) to incorporate into this memo, but it is available online at http://www.cise.ufl.edu/research/revcomp/-theory/three-d/optimizer.cpp. We summarize its operation here.  Given specific values of technological, economic, and application parameters, the purpose of the program is to calculate the estimated cost-efficiency (in terms of operations per dollar) of the most cost-efficient possible fully-irreversible versus partially-reversible machine configurations.  Layered on top of this, a parameter sweep projects how the cost-efficiency advantage of reversible computing is expected to change through future years of technology development.
3.1.  Irreversible Machine Optimization.

The irreversible machine is optimized as follows.  

First, if the total leakage (standby power consumption) that is determined by the device technology and the memory requirement of the application exceeds a specified limit Pcpu on total power (an application parameter), then achieving the given requirements is impossible in the given technology, and the procedure terminates with a “failure” result.

Otherwise, we begin by assuming a cycle time and inter-device distance that is as small as possible, given the device technology.  

If the cycle time is too short for communication to neighboring devices, it is increased until it is sufficient for that purpose.  If the cycle time is too short for the sum of switching power and leakage power to be less than the total power limit, then it is increased until it is sufficient for that purpose.

Next, we check whether the heat flux constraints of the cooling technology are satisfied.  If not, we consider whether they could be satisfied simply by spreading out the devices, since this would not decrease hardware efficiency.  If not, then we do a binary search over the logarithm of clock speed to find the minimum amount of slowdown that will be sufficient to permit spreading to achieve the cooling limit, then use an analytical formula to find the minimum amount of spreading that is needed, after the slowdown.

3.2.  Reversible Machine Optimization.

Optimizing the (partially-) reversible machine is a little more complicated.  We have a couple of different reversiblization algorithms to consider: The original one due to Bennett (1989), as well as the modified version described in [prev. memo].  To determine which is more optimal, we must try both.  Also, for comparison, we also consider a hypothetical “perfect” reversible algorithm that has no space or time overheads when compared to the irreversible case.  This would be the case if, for example, the particular computation in question happened to be an inherently reversible computation to begin with, or happened to have an equally efficient reversible algorithm.


Once an algorithm (Ben89 or Frank02) is chosen to try using for the “imperfect” case, we must choose specific values of the n and k parameters of the algorithm.  Through inspection of various results, it was found that for the particular range of parameters we studied, the optimal value of n would always be less than 10, and the optimal k less than 20, so, the search was narrowed to parameter values in this range.  Therefore a simple discrete search through all combinations of (integer) values of n and k in this range guaranteed us to find the optimum settings.


For each candidate value of n and k, we then performed an optimization similar to, but slightly more complicated than, that described above for the irreversible machine configuration.  This works as follows.

First, we check to make sure that the extra storage needed for the reversible algorithm doesn’t cause the standby-power consumption to exceed the total power limit.  If it does, then the particular algorithm parameters that were chosen can’t work, and we can proceed to the next candidate values or next algorithm.


Next, we consider running the machine at the analytically-derived speed (as per the analysis in section 2 above) that would minimize the sum of spacetime and energy costs.  This speed, if it is achievable, would yield the best overall cost-efficiency for the computation.  However, it may be too fast for some of our constraints.


We check whether it is faster than the minimum transition time of the devices; if so, we bump the clock period up to that point.


Next, we check whether the total power (including irreversible, adiabatic, and leakage power) is too high.  If so, then we use a quadratic-formula expression (similar to the one derived earlier) to find the minimum increase in clock period that would take the total power down to the maximum allowed level.


Next, we check whether the clock period is less than the time to reach the nearest neighbors; if so then we increase it further, to reach that point.


Next, we check the heat-flux limits, like in the irreversible case.  If there is a heat flux problem, we slow down by the minimum amount needed (found by binary search) to fix it, then, spread out the processors by the minimum amount needed to actually fix it.
3.3. Technological Parameter Sweep


In order to begin to get a realistic idea of how the cost-efficiency of using reversible computing (relative to not using it) will change over time in the coming decades, we programmed a simultaneous multi-parameter sweep along a line in parameter space, parameterized by the year, for each year from 2002 to 2070.

Across all years, the following parameters were held constant:

· Total cost to manufacture the processor, of $1,000 U.S. dollars.  This is a typical cost for a high-end desktop CPU.

· Time constant for depreciation of hardware, of 3 years.  This is the time over which the machine is expected to lose nearly all of its value due to obsolescence.  More formally, this is the time of intersection with the 0-dollar axis of the line tangent to the value-versus-time curve at the time when the machine is manufactured.  The actual curve may be closer to an exponential decay than a straight line.
· Total power limit of 100 W, also typical for a high-end desktop CPU.

· Power flux limit of 100 W per cubic centimeter, about the largest that can be handled by today’s cooling technologies.

· Cost of energy, 10¢ per kilowatt-hour, a typical rate charged by public utilities today.

· Leakage rate of 1000 nats per second per device.  That is, each device loses 1 nat’s worth of state information in 1 millisecond.  This is typical of decay rates in DRAMs today.  It seems reasonable even for nanotechnology, because some techniques that have been proposed for quantum computing have coherence times about this long.  Further, Drexler’s nanomechanical rod logic has leakage much smaller than this.

The following independent parameters were varied (and are plotted in figure 1 below):

· Entropy generation per irreversible bit-operation.  Today, about 105 nats of entropy are generated when irreversibly switching a minimum-sized transistor in 0.1-μm CMOS technology over a voltage swing typical for commercial processors.  Based on technology trends (for transistor size and operating voltage) specified by the ITRS, this figure for the minimum entropy generation of an irreversible bit-operation will decrease at a rate of about −28% per year over the next 15 years.  We assume this rate remains constant (even if technology moves away from CMOS) until the entropy generation per irreversible bit-op bottoms out at the von Neumann limit of 1 bit.  This happens in 2038.
· Maximum clock frequency.  This is about 2 GHz in commercial processors today, and we assume the clock period will continue decreasing at a constant, conservative Moore’s law rate of about −50% per 3 years (−20% per year).  (The actual trend may be faster than this.)  We assume the clock period bottoms out at 16 femtoseconds, which is the quantum minimum time for a logical transition given by the Margolus-Levitin relation, assuming that the smallest elements that are transitioning carry no more than 1 eV of energy above their ground state.  (For example, this would apply to a single electron that has been accelerated across a 1 V voltage drop.)  This limit is reached in 2048.
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Figure 1.  Independent variables for the particular technological parameter sweep we performed in this analysis.  Sia = Entropy per irreversible active device transition, in nats;  tci = best time per cycle for a single device operated irreversibly, in seconds;  ld = minimum length between centers of neighboring devices, in meters;  Cd = manufacturing cost per device, in dollars.
· Minimum device pitch.  Including some space for interconnecting wires, an average logic gate takes about a micron-square area today.  We assume that the implied 1-micron average spacing also decreases at the same Moore’s Law rate as clock frequency, or −20% per year.  We assume it bottoms out at 1 nm, which is only about 5 carbon-atom diameters; this seems pretty minimal for the spacing between functional logic elements.  This limit is reached in 2033.
· Cost per device.  We assume that the $1,000 constant processor cost is sufficient to pay for a constant 1 square centimeter’s worth of logic devices in a single layer, when packed at the minimum pitch.  (For micron-pitch devices in 2002, this is 100 million devices, the actual number in some processors available today.)  Thus, the cost per device goes down quadratically with the device pitch.  Importantly, we hypothesize that cost per device continues decreasing at the same constant rate, even after the device-size limit is reached, perhaps because of continuing improvements in multi-layer, 3d nano-manufacturing technology, such as self-assembly techniques, or 3d nano-assemblers, or improved automation.  In any event, we know of no clear fundamental limit to the economic efficiency of manufacturing which might cause costs to stop decreasing.  Labor-related costs can always be reduced through improved automation, so the only irreducible costs must relate to raw resource requirements.  One lower bound on resource requirements could perhaps be obtained by considering the cost of disposal of the naturally-occurring entropy that must be expelled from the raw materials in order to rearrange them into the desired form. We have not yet calculated the magnitude of this limit; but we expect it to be much smaller than actual manufacturing costs for many decades to come.
All other parameters for the optimization are derived from the above.  In particular, the entropy coefficient is assumed to be such that a device operating adiabatically at the maximum speed generates as much entropy as an irreversible transition, which is true for adiabatic switching in voltage-based logic.  It is possible that entropy coefficients will continue improving even after the technology reaches the von Neumann-Landauer limit for irreversible operations, which would improve our case for reversibility after that time.
The computation is assumed to be a 3-D mesh algorithm that requires that all devices in the processor switch state once per cycle (a favorable assumption for reversibility), and that devices need to communicate only with their logical nearest-neighbors in the mesh within 1 cycle.  (Imposing a longer per-cycle communication distance would yield a better advantage for reversibility.)

For each year’s parameter settings, the optimization of irreversible, realistic reversible, and “perfect” reversible machines was done, and the results plotted below.

Note that if the reader does not agree with our assumptions about the future course of evolution of some technological parameters, it would be easy for them to explore the consequences of any alternative assumptions using our same optimization program.

4. Computational Results
The results of the parameter sweep are shown in figure 2 below.
Note that for best-case special-purpose computations, reversibility starts to be beneficial almost immediately.  For general-purpose computations, we must incur the overheads of a general irreversible-to-reversible transformation such as Bennett’s, and as a result the benefits of reversibility do not start appearing until around 2010.  

Note that the slopes of all curves change abrubtly in 2038 when the thermodynamic limit for irreversible computing is reached.  The best advantage for reversibility is obtained in about the year 2056, when it is almost 1,000 times as cost-effective as irreversible computing for general-purpose applications, and almost 100,000 times as cost-effective for inherently-reversible special-purpose applications.  

The dip in all curves after about 2058 is an artifact of the chosen scenario and cost scaling model.  At this point, time-amortized manufacturing cost has become comparable to leakage power cost, and as a result, we can afford to attack computational tasks so large that the leakage alone is edging up against the maximum power constraint, and the machines have to be slowed down drastically in order to avoid exceeding the power budget.  After 2060, we have reached a point where for $1,000 we can build a computer containing so many leaky devices (about 1019) that it already consumes more than 100W just statically maintaining its state information!  At this point, leakage rates must be reduced in order to make further progress with the $1,000/100W scenario.
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Figure 2.  Cost-efficiency, in logic operations per dollar, for irreversible (lower line), general reversible (middle line), and best-case reversible (upper line) computations, as a function of year, for the $1,000, 100W desktop scenario described in the previous section.  
To illustrate the optimized machines in more detail, below is some example data, exactly as output from the simulation, in this case for just one specific year, namely 2050.  

A remark: The time given below for the entire computation may seem ridiculously large (~2×1011 secs. or 6000 years in the irreversible case, and ~2×108 s. or 6 years in the reversible case), but since we are comparing costs per unit of computational work performed, the reader should keep in mind that absolute magnitude of these numbers is completely arbitrary, and only their relative magnitude has any real import.
INPUT PARAMETERS:

-----------------

Device parameters:

   Device length: 1e-09 m

   Min. time per device operation: 1.65e-14 secs

   Entropy generated per device erasure: 0.693147 nats

   Leakage rate per device: 1000 nats/s

   Frictional coefficient of reversible device ops: 1.14369e-14 nats/Hz

Cooling system parameters:

   Entropy flux: 2.41432e+26 nat/m^2/s

   Effective temperature: 300 K

Economic parameters:

   Cost of whole computer:     $1000

   Cost per device:            $4.97323e-15

   Cost of entropy generation: $1e-28/nat

   Rental cost per-device:     $5.25307e-23/s

Computational task parameters:

   Maximum number of devices needed:             2.01076e+17

   Logical mesh diameter:                        585851 devices

   Number of devices in 1-cycle range:           1

   Logical diameter of 1-cycle range:            1 devices

   Number of cycles of irreversible computation: 3.63636e+16

   Number of occupied device-cycles needed:      7.31187e+33

   Number of active device-operations needed:    7.31187e+33

   Average memory usage:                         100%

   Processing utilization:                       100%

STATS ON OPTIMIZED IRREVERSIBLE COMPUTATION:

-------------------------------------------


(Cooling-limited regime.)


(Total power limited regime.)

Mechanical stats:

   Spread-out factor:        17.0863

   Pancake factor:           291.94

   Dimensions of computer:   (0.01001m x 0.01001m x 3.42878e-05m)

   Estimated mass (carbon):  1.98443e-05 lb

   Number of device layers:  34287.8

Performance stats:

   Slowdown factor:          3.52809e+08

   Time for computation:     2.11686e+11 s

Power stats:

   Leakage energy:           48972.9 kWh

   Bit erasure energy:       5.83118e+06 kWh

      TOTAL ENERGY:             5.88016e+06 kWh

   Total power:              100 W

   Power flux:               99.8003 W/cm^2

Cost stats:

   Cost of computer:       $1000

   Cost to rent all:       $2.23597e+06

   Cost to rent utilized:  $2.23597e+06

   Leakage Cost:           $4256.5

   Erasure Cost:           $506820

      Total Energy Cost:   $511077

      TOTAL COST:          $2.74705e+06

   Energy premium:         0.22857

Cost allocation: 

   Hardware:  81.3954%

   Leakage:   0.154948%

   Erasure    18.4496%

STATS ON OPTIMIZED WORST-CASE REVERSIBLE COMPUTATION:

-------------------------------------------


(Cooling-limited regime.)


(Total-power-limited regime.)

Reversible algorithm stats:

   Choice of algorithm:  0 (Ben89)

   Choice of n:          4

   Choice of k:          7

   Device blowup:        26

   Operation blowup:     11.8955

   Device-cycle blowup:  53.5281

   Cycle count blowup:   11.8955

   Irrev. op reduction:  2401

Mechanical stats:

   Spread-out factor:        17.0692

   Pancake factor:           11.206

   Dimensions of computer:   (0.01m x 0.01m x 0.000892375m)

   Estimated mass (carbon):  0.000515436 lb

   Number of device layers:  892375

Performance stats:

   Cycle slowdown factor:    26462.9

   Time for computation:     1.88873e+08 s

   Speedup:                  1120.78 x faster

Power stats:

   Leakage energy:           196.623 kWh

   Adiabatic energy:         2621.2 kWh

   Bit erasure energy:       2428.65 kWh

      TOTAL ENERGY:             5246.47 kWh

   Total power:              100 W

   Power flux:               100 W/cm^2

Cost stats:

   Cost of computer:         $26000

   Cost to rent all:         $51870.2

   Cost to rent utilized:       $8977.29

   Leakage cost:             $17.0896

   Adiabatic cost:           $227.823

   Erasure cost:             $211.087

      Total Energy Cost:        $456

      TOTAL COST:               $9433.29

   Energy cost premium:      0.0507948

   Cost allocation: 

      Hardware:  95.1661%

      Leakage:   0.181163%

      Adiabatic: 2.4151%

      Erasure:   2.23768%

REVERSIBLE COST-EFFICIENCY ADVANTAGE IS: 291.208 x as cost-efficient

STATS ON OPTIMIZED BEST-CASE REVERSIBLE COMPUTATION:

-------------------------------------------


(Cooling-limited regime.)


(Total-power-limited regime.)

Reversible algorithm stats:

   Choice of algorithm:  2 (ideal)

Mechanical stats:

   Spread-out factor:        17.0692

   Pancake factor:           291.357

   Dimensions of computer:   (0.01m x 0.01m x 3.43221e-05m)

   Estimated mass (carbon):  1.98245e-05 lb

   Number of device layers:  34322.1

Performance stats:

   Cycle slowdown factor:    18783.2

   Time for computation:     1.12699e+07 s

   Speedup:                  18783.2 x faster

Power stats:

   Leakage energy:           2.60727 kWh

   Adiabatic energy:         310.446 kWh

   Bit erasure energy:       0 kWh

      TOTAL ENERGY:             313.054 kWh

   Total power:              100 W

   Power flux:               100 W/cm^2

Cost stats:

   Cost of computer:         $1000

   Cost to rent all:         $119.041

   Cost to rent utilized:       $119.041

   Leakage cost:             $0.226612

   Adiabatic cost:           $26.9826

   Erasure cost:             $0

      Total Energy Cost:        $27.2092

      TOTAL COST:               $146.25

   Energy cost premium:      0.22857

   Cost allocation: 

      Hardware:  81.3954%

      Leakage:   0.154948%

      Adiabatic: 18.4496%

      Erasure:   0%

REVERSIBLE COST-EFFICIENCY ADVANTAGE IS: 18783.2 x as cost-efficient

5. Model for Future Analysis: Timing System Performance

In this section we consider an effect on the cost/performance scalability of adiabatic computing that arises from the requirement for extremely low-frequency resonant operation in the adiabatic limit.  This effect may become important in cases where the standby entropy generation rate Sdcf is small enough, or the oscillator cost high enough, that the major limiting factor on the energy efficiency or overall cost-efficiency of the system is due to the large size of sufficiently low-frequency oscillators, rather than the energy efficiency of individual logic devices.
Let us consider, as a representative example, a timing source consisting of a rotating, hollow cylinder of radius and length r, mass m, and angular velocity ω.  The rotational velocity of the cylinder is then v=rω, and the angular momentum of this object (assuming that most of the mass is located at about radius r from the axis of rotation) is mrv = mr2ω.  According to quantum mechanics, the total angular momentum of any system (or rather, the component of its angular momentum vector in any given direction) is quantized to integer multiples of Planck’s constant (,
 so we know that, in order to be completely distinct from a rotationless state, mr2ω ≥ (.  Therefore, the minimum definite angular velocity ωmin = (/mr2.  The minimum definite frequency fmin  = ωmin/2π is then given by fmin = (/2πmr2.  (We expect the minimum frequencies for other types of oscillators to scale similarly with their size.)

As an example, a section of a minimum-radius covalently-bonded carbon nanotube made of 20 Carbon atoms, each at a radius of 1.95Å from the axis of rotation, would have a minimum non-zero rotation frequency of about 

fmin = ( / [2π(20 × ~12 amu)(1.95Å)2] = ~1.1 GHz.

Why is the minimum frequency important?  Remember, in an adiabatic system, the energy dissipation per cycle is proportional to f, or in other words the quality factor Q of the logic cycle is inversely proportional to f.  So a fixed-size oscillator implies a maximum Q for whatever adiabatic logic mechanism it is driving.  
Note that the minimum f gets smaller if the cylinder size is increased.  Let us consider the impact on the maximum Q of the logic that results from scaling up the cylinder size in all dimensions by a growth factor g.  The thickness of the cylinder is assumed to scale up as well, so that the average mass density in a box around the wheel remains constant.  So, the wheel radius increases to rg, and the mass to mg3.  The minimum angular velocity is now ωmin = (/(mg3)(rg)2 ( g−5, and so, Qmax ( g5.  The minimum rotational velocity is then vmin = (rg)ωmin ( g−4.  Rotational kinetic energy of the wheel at the minimum velocity is then ½(mg3)vmin2 ( g−5.  Note that the minimum frequency is proportional to the minimum energy!  In retrospect, this is obvious from the basic quantum relation E = hf.
Since the oscillator has to transfer energy to and from the logic, its kinetic energy has to be at least large enough to drive the logic in question.  So, if we want to increase Q beyond the limit set by the given wheel size, the wheel radius goes up as Q1/5, the wheel volume as Q3/5, and yet the amount of logic that can be powered by the given wheel goes down, proportionally to E and f and thus as Q−1.  The ratio between wheel volume and powered logic volume therefore goes as Q8/5.  Once this ratio >>1, the effective volume (and mass) of the timing source per device goes up as Q8/5.  In this regime, the average separation (d between logic devices, and associated communication delay, goes as ~ Q8/15.
Let us consider further the implications of the decreasing kinetic energy of slower oscillators.  More precisely, the kinetic energy of the wheel when rotating at a definite minimum non-zero rotation velocity is


Ekmin = ½mvmin2

     = ½m(rωmin)2

     = ½m[r((/mr2)]2 = ½((2/mr2)
For our C20 nanotube segment example from earlier, this energy comes out to 2.3 (eV.
The maximum rate of transition along an unboundedly long sequence of orthogonal states for a system (here, our combined oscillator-logic system) of given average free energy E (here, this is just our oscillator’s kinetic energy) is given by the Margolus-Levitin relation ν(max = 2E/h.  For our specific case, letting E = Ekmin, we find that ν(max(Ekmin) = 2[½((2/mr2)]/h = (2/ hmr2 = (/2πmr2 = fmin.  In other words, the energy Ekmin stored in the oscillator, when it is rotating at its minimum frequency fmin, is just exactly enough energy to drive a single transition from one logical state to a distinct (orthogonal) other state, for example a single bit-flip, per complete oscillation period.  So, if the oscillator rotates instead at some integer multiple fn = nfmin of the minimum frequency, since ν(max,n ( Ekn ( vn2 ( fn2 ( n2, its energy will therefore be sufficient for it to drive an exactly n2 higher rate of logic transitions, or in other words, exactly n transitions per cycle, or alternatively 1 transition that involves n times more energy than the minimum needed to complete it during 1 cycle.
More generally, we have the inequality Eaaco/Ekmin ≤ fc/fomin, where Ea = energy transferred per active transition, aco = active transitions per cycle per oscillator, fc = frequency of cycles, and fomin = minimum oscillator frequency.  The reason for the inequality is that some of the energy may not be being used usefully to make logical transitions happen, but may instead be causing incidental overhead transitions, for example in the mechanism for transferring energy between the wheel and the logic.
How much energy transfer needs to be involved in order to switch a logic element?  To cause a definite transition of a system from 1 state to another, the information transferred must be at least 1 bit = kB ln 2, which means the energy transferred must be at least Ea ≥ kBT ln 2, by the definition of temperature T = ∂E/∂S.
Finally, if the purpose of the energy transfer is to change the height of an energy barrier between two states, as in a transistor, the amount of energy transferred relates to the on/off ratio of energy transfer rates between those two states as follows: Pdon/Pdoff ≤ exp(Ea/kBT).

Note that Pdon ≥ Eafc in order for enough energy to switch one device to pass through another device during the course of 1 cycle.

Note also that the standby entropy generation rate per device Sdt ≥ PdoffT.

We have almost finished providing enough fundamental relations to tie together all of these energy-, frequency-, and timing-related considerations.  The only remaining item to address is the frictional coefficient Sdcf.  
One possible, though rather pessimistic assumption to make would be that all of the energy Ea involved in a transition is thermalized whenever the transition occurs at the maximum rate νa = 2Ea/h given by the Margolus-Levitin relation, so that Sdcf = (Ea/T)/(2Ea/h) = h/2T.  At 300 K, this comes out to 80 μnat/GHz = 115 μb/GHz.  At lower temperatures, minimum entropy coefficients would go even higher, according to this formula.  This definitely seems pessimistic, because specific logic technologies such as Helical logic [cite] and reversible superconducting electronics [Likh] have been analyzed to have considerably smaller entropy coefficients (10 μb/GHz) [cite me] at considerably lower temperatures.  Note that saying that ~h/2T is a minimum entropy coefficient would be equivalent to saying that ~h/2 is a minimum energy coefficient Edcf, which is already known not to be the case [cite Likharev, and Feynman reference from helical logic paper].
At this point, we do not yet know how to calculate any technology-independent minimum value for Sdcf that depends only on other generic device parameters, and on fundamental laws of physics.  It is possible that a careful consideration of the implications of the adiabatic theorem of quantum mechanics [cites] might help to clarify this issue.  However, we have not yet done this.
We therefore will need to keep in mind two scenarios as we consider the future evolution of technology: (1) The pessimistic scenario outlined above posits a fixed lower bound on Sdcf at a given temperature as described.  (2) The optimistic scenario posits that there is no fundamental lower bound on Sdcf, and that as time passes it continues decreasing at the same rate as it did before the lower bound on the entropy generation Sia for irreversible operations was reached.
A future memo will incorporate the observations made in this section into a similar scaling analysis and optimization procedure to the one that we described in sections 1-4 above.

6. Conclusion

Given a reasonable set of assumptions, it seems that reversible computing will become increasingly cost-effective compared to ordinary fully-irreversible computing for general-purpose computations, starting about 10 years from now, and continuing until at least around the 2050s, by which time the cost-efficiency advantage to be gained from reversibility will be about a factor of 1,000, for general-purpose computations, when using Bennett’s algorithm to attain logical reversibility, and the advantage will be as high as 100,000 for computations already having inherent reversibility.  Advantages might continue improving even longer if per-device leakage rates can be reduced below the level we assumed.

Perhaps the strongest (i.e., least well-justified, at present) assumption that we made in order to obtain this result was that the energy dissipation in the clocking system for an adiabatic processor can be kept to a level comparable to the dissipation in the logic, and furthermore, that the physical presence of the oscillator mechanism will not contribute significantly to the average spacing and communication delay between devices.  Future work will incorporate specific models of the clocking system such as those that we have begun outlining in section 5, in order to establish whether this assumption is reasonable.

Another potentially questionable assumption is that manufacturing cost per-device can continue decreasing, after device size reaches a lower limit.  We would like to also incorporate principled lower bounds on manufacturing costs per device (at least in terms of entropy generation required) in order to justify this assumption.  However, in our results, we can already see an advantage for reversibility even before 2033, the year that this assumption begins to be relevant.


The results of this paper could be made more general by loosening the assumptions of the 100% activity factor, and of the mesh-structured task definition.  Removing the former assumption would let the results apply to computations not having maximal parallelism, while removing the latter assumption opens the door to attacking non-mesh-structured problems in scenarios where total power is not limited except through its impact on cost.  However, the latter assumption turned out not to be relevant anyway for obtaining the results of section 4, since performance there turned out to be limited only by total power constraints, rather by the tension between communication delays and power density, and so the structure of the computational task did not matter.


Finally, one way to possibly even strengthen the long-term case for reversibility would be if we can justify a further assumption that entropy coefficients may continue to decrease substantially even after the limit for entropy generation for irreversible operations is reached.  This seems possible, given the observations we already made in section 5 about specific technologies that might achieve this, although it remains unclear how quickly entropy coefficients might decrease after this point, or whether they ultimately have any lower limit.


Also, reversiblization algorithms that are more efficient than Bennett’s may yet be discovered, in which case the curve above for “general-purpose” computations would move closer to the one for “best-case” computations.  This presents an opportunity for computer scientists interested in pure algorithms to potentially make a discovery that will have a significant impact on the performance of all general-purpose computing in the long term.

In closing, we implore industries and agencies who are interested in maximizing the cost-efficiency of future nanocomputers to support continued research in the area of reversible computing.
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� The average angular momentum of a particular quantum state of a system can be a continuous quantity less than (, but such states are just superpositions of eigenstates of the angular momentum observable, each of which has integer L/(.





_1096900014.unknown

_1096900068.unknown

_1096900314.unknown

_1093713744.unknown

_1093882319.unknown

_1093888112.unknown

_1093845815.unknown

_1093711065.unknown

