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Abstract—Affective and cognitive processes form a rich 

substrate on which learning plays out. Affective states often 
influence progress on learning tasks, resulting in positive or 
negative cycles of affect that impact learning outcomes. 
Developing a detailed account of the occurrence and timing of 
cognitive-affective states during learning can inform the design of 
affective tutorial interventions. In order to advance 
understanding of learning-centered affect, this paper reports on 
a study to analyze a video corpus of computer-mediated human 
tutoring using an automated facial expression recognition tool 
that detects fine-grained facial movements. The results reveal 
three significant relationships between facial expression, 
frustration, and learning: 1) Action Unit 2 (outer brow raise) was 
negatively correlated with learning gain, 2) Action Unit 4 (brow 
lowering) was positively correlated with frustration, and 3) 
Action Unit 14 (mouth dimpling) was positively correlated with 
both frustration and learning gain. Additionally, early prediction 
models demonstrated that facial actions during the first five 
minutes were significantly predictive of frustration and learning 
at the end of the tutoring session. The results represent a step 
toward a deeper understanding of learning-centered affective 
states, which will form the foundation for data-driven design of 
affective tutoring systems.  

Keywords—affect; frustration; learning; computer-mediated 
tutoring; facial expression recognition; facial action units; intensity 

I. INTRODUCTION 
Cognitive and affective processes intertwine during 

learning, comprising a rich layer of emotional experience. 
Affective states often influence progress on learning tasks, 
resulting in positive or negative cycles of affect that impact 
learning outcomes [1–3]. Consequently, the influence of 
affective phenomena on learning has led to a recognized need 
to understand the occurrence, timing, and impact of cognitive-
affective states during learning [1–5]. Developing a clear 
understanding of these phenomena is critical to informing the 
design of affective tutorial interventions [1–3]. 

Numerous studies have investigated learning-centered 
cognitive-affective states such as frustration, anxiety, boredom 
(or disengagement), confusion, delight, eureka (or a-ha 
moments), excitement, flow (or engaged concentration), and 
surprise [1–7]. Each of these states contributes to the complex 
intermingling of cognitive and affective processes inherent in 
learning. This paper focuses on frustration, which plays a 
central role in learning, possibly hindering it [1], [3]. When 
students are unable to surmount difficulties during learning 
tasks, they may remain in a “state of stuck” [1], [6], [7]. 

Similarly, if students are unable to reconcile confusion induced 
by new concepts, they may transition to frustration [2]. Thus, 
automatic detection or prediction of frustration is vital to 
designing affective tutorial interventions that alleviate 
frustration and foster learning. 

Facial expression has proven particularly useful for 
investigating affect, in large part because of the ubiquity of 
facial expression in human experience and the non-
invasiveness of video recording [2], [4], [5]. In many studies, 
the Facial Action Coding System (FACS), which enumerates 
possible movements of the human face, is used to manually 
annotate facial movements that comprise expressions of 
emotion [8], [9]. This approach has been used to study facial 
displays of learning-centered cognitive-affective states [2], [4], 
[5]. Often, facial expressions are recorded and then evaluated 
at moments of self-reports or judged affective events using 
FACS [2]. In this work, we aim to automatically detect facial 
action units that are related to frustration. 

There have been many advances in automated facial 
expression recognition research in recent years [10], [11]. 
Widely used techniques have ranged from facial feature 
tracking to systems that automatically interpret emotions [10–
12]. Facial feature tracking methods offer a convenient face 
mesh representation that can be used as input for constructing 
machine-learned models of facial expression [10], [11]. 
Systems that automatically interpret emotions are useful in 
many domains, but prior research has shown that the most 
frequently studied emotions (e.g., Ekman emotions [9]) are 
rarely present in learning [1], [2]. Prominent “off-the-shelf” 
facial expression tracking systems have tended to focus on 
recognizing Ekman emotions (e.g., happy, sad, angry) [13], 
[14]. More recently, there has been significant progress in 
automatically detecting FACS facial action units that may be 
correlated with learning-centered affective states [15–17]. One 
automated FACS coding system, the Computer Expression 
Recognition Toolbox (CERT), has recently been made 
available to the research community [15]. 

We applied CERT to a corpus of computer-mediated 
human-human tutoring in order to investigate relationships 
among automatically detected facial action units, affective 
outcomes, and learning gains. Based on frequencies of 
manually labeled facial action units in a previously analyzed 
computer-mediated tutoring corpus within the same domain 
[4], the five most frequently occurring action units were 
selected for automated analyses: AUs 1, 2, 4, 7, and 14. An 
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initial analysis was conducted to provide a large-scale 
validation of CERT output versus manual FACS annotations 
and to produce exploratory predictive models of affective 
outcomes and pre-post learning gain, as reported in [18]. The 
present analyses built upon those results with a focused 
investigation through the lens of learning gain. First, student 
self-reported frustration was found to be negatively correlated 
with student learning. Second, correlations of facial expression, 
frustration, and learning produced three primary results: 1) 
AU2 (outer brow raise) was negatively correlated with learning 
gain, 2) AU4 (brow lowering) was positively correlated with 
frustration, and 3) AU14 (mouth dimpling) was positively 
correlated with both frustration and learning gain. These results 
represent possible indicators of affective states as they occur 
over time, such as frustration, anxiety, confusion, and effortful 
thought. Third, models were constructed to inform further 
study on early prediction of frustration and learning, 
demonstrating that facial actions within the first five minutes of 
a tutorial interaction are significantly predictive of student self-
reports at the end of the session. These analyses suggest that 
current automated facial action unit tracking is sufficiently 
accurate to support wide-scale application in intelligent 
tutoring systems and education research. Further research in 
this vein will inform the next generation of affective tutorial 
interventions that respond to moment-by-moment frustration 
and other learning-centered cognitive-affective states. 

II. RELATED WORK 
Studies of facial expressions related to learning-centered 

cognitive-affective states can be categorized into one of three 
paradigms: 1) observation and annotation of affective 
behaviors; 2) investigation of facial action units involved in 
learning-centered affect; and 3) application of automated 
methods to detect affective states. We review prior work in 
each of these categories, with a focus on facial expression 
recognition in the third category due to space constraints. 
However, we also note the substantial prior work on predicting 
frustration from physiology [6], [7]. 

The first category of studies involves observing and 
annotating affective behavior, and often represents a precursor 
to further analyses of learning-centered affect. Prior to 
applying automated methods to detect student affective states 
during interactions with Wayang Outpost (a mathematics 
intelligent tutoring system), Woolf et al. observed student 
behaviors including head nodding/leaning, postural movement, 
verbalization, and smiling, which supported further study of 
arousal and valence [3]. Afzal & Robinson studied affect in a 
naturalistic video corpus taken during self-study of tutorial 
materials and a complex mental task, multiple coders were 
used to label emotions [19]. The coders identified confusion, 
happiness, interest, and surprise as the most frequent cognitive-
affective states. Lastly, Baker et al. have used classroom 
observations to identify and analyze moment-by-moment affect 
during student interactions with cognitive tutors and other 
educational software [1]. The observation protocol has been 
developed over several years, and involves viewing students 
through peripheral vision to interpret their posture, facial 
expression, gesture, speech, and eye gaze. The protocol has 
been applied to student populations throughout the world, and 
has provided key insight into student affective states and 
learning, such as the detrimental nature of boredom. A key 

difference with the present study is that we aim to 
automatically detect learning-centered affect through facial 
action unit tracking, which is particularly applicable to 
computer-mediated tutoring. 

The second category of studies involves investigating facial 
action units in learning-centered affect. These studies yield 
detailed data for designing affective tutoring systems. In a rich 
line of research, D’Mello and colleagues have compiled 
correlations of facial action units and self-reported and judged 
affect; for example, in a study of seven students’ emote-alouds 
during interaction with AutoTutor (a natural language 
intelligent tutoring system that has been used in multiple 
domains), FACS coders annotated video at moments of 
students’ emote-alouds [2]. In the same work, multiple judges 
annotated affect from videos of twenty-eight students’ tutoring 
sessions with AutoTutor. The FACS labels of both studies 
were compared, identifying correlations of AU1 (inner brow 
raising) and AU2 (outer brow raising) with frustration, and 
correlations of AU4 (brow lowering) and AU7 (eyelid 
tightening) with confusion. In a previous study that we 
conducted, manual FACS coding was applied to a computer-
mediated human-human tutoring corpus [4], [5]. In analysis of 
AU4 of fourteen students, a hidden Markov model (HMM) was 
machine-learned to investigate the role of confusion within the 
context of the tutorial dialogue and learning task [5]. The 
HMM accurately predicted AU4 events using the combination 
of prior AU4, dialogue, and task performance. In further work, 
we constructed a descriptive HMM from seven student 
sessions with manual FACS annotations of 16 AUs [4]. The 
analyses presented in this paper differ from prior studies in that 
we applied automated facial action unit tracking to identify 
correlations of facial expression, frustration, and learning. 
Manual FACS annotation is notably labor-intensive, so 
methods applying automated FACS coding can yield a 
substantially higher sample size across a broad set of facial 
expressions. 

There have been few studies in the third category, which 
focuses on automatically detecting facial expressions of 
learning-centered affect. Woolf et al. tracked cognitive-
affective states of students interacting with Wayang Outpost 
using the MindReader tracking software [20]. The MindReader 
system was trained on posed facial expressions and head 
movements of states such as interested or concentrating [12]. 
MindReader tracking of interest was found to improve 
predictive models of student self-reported confidence and 
excitement, while tracked interest did, in fact, improve 
predictive models of student self-reported interest [20]. In other 
work on automated detection, the authors of CERT have used it 
to track facial action units related to learning-centered affective 
states [21], [22]. For instance, CERT was used to track facial 
expressions of students interacting with a human tutor 
operating an iPad interface during cognitive game tasks (a 
Wizard-of-Oz design) [22]. Additionally, CERT has been used 
to track children’s facial expressions during a cognitive task 
[21]. In both cases, CERT output was used as a relative 
comparison measure (i.e., the amount and type of facial 
movement before, during, and after performing a task). While 
this provides insight into facial expressions at meaningful 
moments, the cognitive tasks were simplified and may not have 
captured the full complexity of cognitive and affective 
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processes involved during learning in an academic scenario. 
The present work represents a novel investigation of 
automatically detected facial action units involved in learning-
centered affect during tutoring, with indications of specific 
facial action units correlated with frustration and learning 
outcomes. 

III. COMPUTER-MEDIATED HUMAN TUTORING CORPUS 
The corpus consists of computer-mediated tutorial dialogue 

for computational concepts. Students (N=67) and tutors 
interacted through a web-based interface that provided learning 
tasks, an interface for computer programming, and textual 
dialogue. The participants were university students in the 
United States, with average age of 18.5 years (stdev=1.5). The 
students voluntarily participated for course credit in an 
introductory engineering course, but no prior computer science 
knowledge was assumed or required. Substantial self-reported 
prior programming experience was an exclusion criterion. Each 
student was paired with a tutor for a total of six sessions on 
different days, each session limited to forty minutes. 
Recordings of the sessions included database logs, webcam 
video, skin conductance, and Kinect depth video. The 
JavaTutor interface is shown in Fig. 1 and the recording setup 
is shown in Fig. 2. 

 

 
Figure 1. The JavaTutor interface 

 
Figure 2. Student workstation with Kinect depth camera,  
skin conductance bracelet, and computer with webcam 

In this study, we analyzed the webcam video corpus of the 
first lesson for each student. The study coordinators started the 
recordings at the beginning of each tutoring session. Thus, the 
students were aware of the recordings. However, once started, 
the recording windows were automatically hidden, so the 
students did not see themselves during the tutoring sessions. 
Additionally, when reviewing the recordings in the process of 
our analyses, we observed that students did not attend to the 
recording devices (webcam and Kinect), which indicates that 
the recordings were unobtrusive. The tutoring video corpus is 
comprised of approximately four million video frames totaling 
thirty-seven hours across the first tutoring lesson. Two session 
recordings were missing due to human error (N=65). The 
recordings were taken at 640x480 pixel resolution and thirty 
frames per second. 

Before each session, students completed a content-based 
pretest. After each session, students answered a post-session 
survey and posttest (identical to the pretest). The post-session 
survey items were designed to measure several aspects of 
engagement and cognitive load. The survey consisted of a User 
Engagement Survey (UES) [23] with Focused Attention, 
Endurability, and Involvement subscales, and the NASA-TLX 
workload scale [24], which consisted of response items for 
Mental Demand, Physical Demand, Temporal Demand, 
Performance, Effort, and Frustration Level. The UES subscales 
were each comprised of multiple Likert-style items, while each 
NASA-TLX item was self-reported on a scale from zero to one 
hundred. As noted by one of the authors of NASA-TLX in a 
retrospective survey of studies using the scale, individual 
response items can be used separately to identify specific 
dimensions of task workload [25]. Thus, our analysis considers 
the response items, including the item for Frustration Level, 
independently from the other survey items. 

IV. FACIAL EXPRESSION RECOGNITION 
The Computer Expression Recognition Toolbox (CERT) 

[15] was used in this study because it allows frame-by-frame 
tracking of a wide variety of facial action units. CERT finds 
faces in a video frame, locates facial features for the nearest 
face, and outputs weights for each tracked facial action unit 
using support vector machines [16]. CERT has been validated 
for use with both adults and children [15], [16], [21]. 

Based on observations from prior studies in task-oriented 
tutoring, we selected a subset of the 30 facial action units that 
CERT detects as the focus of the present analyses. The subset 
of facial action units was informed by a prior naturalistic 
tutoring video corpus that was manually annotated by certified 
FACS coders [4]. The five most frequently occurring facial 
action units were selected for the present study. These were 
AUs 1, 2, 4, 7, and 14. We observed that raw CERT output 
varied significantly across individuals, as noted by the authors 
of CERT [16], [22]. Thus, we adjusted the output values by 
subtracting the baseline (average) output value by facial action 
unit for each student.  

The naturalistic tutoring video corpus described above [4] 
was processed using CERT, enabling comparison with the 
manual annotations of AU presence and absence. In order to 
interpret CERT output as indicating presence or absence of a 
facial action unit, a detection threshold of 0.25 was empirically 
determined. For instance, the average adjusted CERT output 
value for AU7 present in the prior corpus was 0.29, while the 
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average for AU7 absent was -0.01. In comparison, the average 
raw CERT output for AU7 present was 0.25, while the average 
for AU7 absent was 0.19. In our initial large-scale validation of 
CERT output with manual annotations in the prior corpus, we 
found that baseline-adjusted CERT output produced more 
consistent values in the presence or absence of the five selected 
AUs compared to raw CERT output [18]. Thus, a combination 
of baseline adjustment of CERT output and an empirically-
determined detection threshold allows for comparison of facial 
action units across individuals. 

Fig. 3 provides detailed comparison of raw CERT output 
versus baseline-adjusted CERT output of AU7. Note that the 
raw CERT output indicates that AU14 (mouth dimpling) is 
present, though it is apparent to a certified FACS coder that the 
action unit is not present in the image. The adjusted CERT 
output correctly indicates that AU7 is present and AU14 is 
absent (based on the 0.25 threshold). Fig. 4 shows adjusted 
CERT output from an example of AU 2, at three moments of 
the facial expression event: just before onset, apex (most 
intense video frame), and just after offset. Fig. 5 shows 
adjusted CERT output for AUs 1, 4, and 14.  

RAW CERT OUTPUT

Action Unit Value 
AU1 -1.36 
AU2 -0.67 
AU4 0.05 
AU7 0.52 
AU14 1.39 

 

ADJUSTED CERT OUTPUT

Action Unit Value 
AU1 -0.22 
AU2 -0.27 
AU4 0.11 
AU7 0.26 
AU14 -0.04 

 

Figure 3. A comparison of AU7 with raw and baseline-adjusted CERT output 

   
AU2 Onset: 

Outer brow raiser 
 

AU1(-0.76) AU2(-0.21) 
AU4(-0.09) AU7(-0.24) 

AU14(0.13) 

AU2 Apex: 
Outer brow raiser 

 
AU1(0.17) AU2(0.27) 

AU4(0.08)   AU7(-0.09) 
AU14(-0.53) 

AU2 Offset: 
Outer brow raiser 

 
AU1(-0.94) AU2(-0.21) 
AU4(0.12) AU7(0.09) 

AU14(0.00) 

Figure 4. The onset, apex and offset of an AU2 event  
with baseline-adjusted CERT output 

   
AU1 and AU4 Apex: 

Inner brow raiser  
and brow lowerer 

AU1(0.80) AU2(-0.12) 
AU4(0.25) AU7(-0.23) 

AU14(-0.06) 

AU4 Apex: 
Brow lowerer 

 
AU1(-0.02) AU2(0.07) 
AU4(0.47) AU7(0.08) 

AU14(-0.85) 

AU14 Apex: 
Dimpler 

 
AU1(-0.02) AU2(0.00) 
AU4(-0.04) AU7(0.00) 

AU14(0.46)

Figure 5. Examples of AU1+AU4, AU4, and AU14  
with baseline-adjusted CERT output 

V. FRUSTRATION, LEARNING AND FACIAL EXPRESSION 
We used correlational analyses to compare affective post-

session surveys, learning gains, and facial expression. First, we 
identified that frustration was the only post-session affect self-
report that correlated with learning gain. Second, we focused 
on how facial expression throughout the sessions correlated 
with frustration and learning gain.  Finally, we examined facial 
expressions at the beginning and end of the sessions and their 
statistical relationships with frustration and learning gain. 

Normalized learning gains were calculated as follows, if 
posttest score was greater than pretest score: 

NLG = Posttest - Pretest 
           1 – Pretest 

Otherwise, the following formula was used: 

NLG = Posttest – Pretest 
             Pretest 

Thus, negative learning gains were possible, although 61 
out of the 65 students had positive learning gain (min=-0.29, 
max=1.00). Correlational analyses of the post-session affective 
survey scales and learning gains were conducted to identify 
potential relationships between affect and learning. Frustration 
was the only affect self-report to correlate with learning gain, 
with higher frustration corresponding to lower learning gain 
(TABLE I).  

TABLE I. CORRELATIONS OF AFFECTIVE POST-SURVEY SCALES AND 
NORMALIZED LEARNING GAIN 

Affect Survey Scale r p 
ENGAGEMENT 0.14 0.288 
MENTAL DEMAND 0.02 0.871 
PHYSICAL DEMAND -0.06 0.610 
TEMPORAL DEMAND 0.03 0.830 
PERFORMANCE 0.18 0.160 
EFFORT 0.04 0.732 
FRUSTRATION LEVEL -0.30 0.015 

 
Because of the important relationship between frustration 

and learning, we focused our present analyses of facial 
expression on frustration and learning gain. The analyses of 
facial expression consider two features for each facial action 
unit: average intensity (average magnitude of CERT output 
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values that were above the detection threshold) and relative 
frequency (percent of tracked frames that were above the 
detection threshold) of each facial action unit. These features 
were calculated across each tutoring session, resulting in ten 
feature values per student. We first considered correlations 
across entire tutoring sessions, and then examined correlations 
for the first five minutes and last five minutes of the sessions. 
The beginning of a session may inform early prediction, while 
the end may more closely reflect self-reports due to temporal 
proximity. We applied a statistical correction for multiple tests, 
arriving at a Bonferroni p-value threshold of 0.0025 for each 
set of analyses of facial movements: entire session, beginning 
of session, and end of session. This more stringent threshold 
controls for the risk of false positives, and is intended to 
increase the generalizability of the findings. Results that were 
significant to this threshold are displayed in bold, and all other 
correlations with p<0.05 are shown. 

The initial analyses correlated facial action units throughout 
the tutoring sessions with normalized learning gains and post-
session self-reports of frustration (TABLE II). Intensity of AU4 
was positively correlated with frustration. Thus, greater 
intensity of AU4 corresponded with higher self-report of 
frustration. Both intensity and frequency of AU2 were 
negatively correlated with normalized learning gain, with only 
AU2 intensity significant after Bonferroni correction. 
TABLE II. CORRELATIONS OF FRUSTRATION, LEARNING AND FACIAL ACTION 

UNITS THROUGHOUT THE TUTORING SESSION 

Action Unit Variable Tutoring Outcome r p 
AU 4 Avg. Intensity Frustration 0.31 0.011 
AU 2 Avg. Intensity Norm. Learn. Gain -0.38 0.002 
AU 2 Relative Freq. Norm. Learn. Gain -0.27 0.029 

Analyses were conducted to examine whether facial 
expressions in the first five minutes of tutorial interaction 
were correlated with frustration and normalized learning gain. 
Four results emerged (TABLE III): intensity of AU14 was 
positively correlated with frustration and frequency of AU2 
was negatively correlated with normalized learning gain. 
Additionally, intensity of AU4 was positively correlated with 
frustration, and intensity of AU2 was negatively correlated 
with normalized learning gain. The correlations involving 
AU2 intensity and AU4 intensity retained their statistical 
significance after Bonferroni correction. 
TABLE III. CORRELATIONS OF FRUSTRATION, LEARNING AND FACIAL ACTION 

UNITS IN THE FIRST FIVE MINUTES OF TUTORING 

Action Unit Variable Tutoring Outcome r p 
AU 4 Avg. Intensity Frustration 0.41 0.001 
AU 14 Avg. Intensity Frustration 0.32 0.010 
AU 2 Avg. Intensity Norm. Learn. Gain -0.38 0.002 
AU 2 Relative Freq. Norm. Learn. Gain -0.28 0.023 

There was one significant result in the correlational 
analysis of frustration, learning, and facial action units in the 
last five minutes of tutoring. Relative frequency of AU14 was 
found to positively correlate with normalized learning gain 
(r=0.52, p<0.001). This result was significant after Bonferroni 
correction. 

VI. EARLY PREDICTION OF FRUSTRATION AND LEARNING 
Linear regression models were constructed to predict 

frustration and normalized learning gain from facial 
expressions in the first five minutes of tutoring. These models 
are intended to inform the use of facial expression features for 
early prediction. Further development of features would be 
necessary to drive affective tutorial intervention. 

Both models were constructed using the significantly 
correlated facial action unit features from Section V. The early 
prediction model of frustration is shown in TABLE IV. The 
model R2 value corresponds to r=0.49, and the model effect is 
greater than either feature alone. The root mean squared error 
(RMSE) value indicates the overall magnitude of error. The 
RMSE of this model shows that it would not distinguish well 
between similar frustration levels, but would perform well at 
distinguishing between very high or low levels of frustration. 

The model for early prediction of normalized learning gain 
is shown in TABLE V. The model R2 value corresponds to 
r=0.40. Thus, the model effect is similar to the most 
explanatory feature, AU2 intensity. The significance values for 
the features also show that AU2 frequency did not significantly 
explain variance beyond AU2 intensity. The RMSE of this 
model is similar to that of the early prediction model of 
frustration. Very high or low values may be accurately 
distinguished, but it is likely to misidentify similar values. 

TABLE IV. EARLY PREDICTION MODEL OF FRUSTRATION 

Frustration Level = p 
81.72 * AU4 Intensity .002 
38.62 * AU14 Intensity .022 
Intercept = -41.69 .002 
RMSE = 21% of range in self-reports  Model R2 = 0.24 

TABLE V. EARLY PREDICTION MODEL OF NORM. LEARNING GAIN 

Normalized Learning Gain = p 
-1.45 * AU2 Intensity 0.020 
-0.46 * AU2 Relative Frequency 0.273 
Intercept = 1.12 < 0.0001 

RMSE = 24% of range in outcomes  Model R2 = 0.16 

VII. DISCUSSION 
We have presented results that demonstrate important 

relationships among frustration, learning and facial expression 
within a corpus of computer-mediated human-human tutoring. 
In this section we focus on interpreting these findings. Two 
notable characteristics of the corpus facilitate this 
interpretation. First, the corpus reflects few social effects on 
nonverbal behavior due to remote dialogue because the 
students and tutors did not see one another. Nonverbal 
behaviors that are common in face-to-face communication, 
such as emblems (e.g., thumbs-up gesture), illustrators (e.g., 
gesticulating to illustrate an idea during speech), and 
regulators (e.g., gesturing for a conversational participant to 
speak) were not displayed [26]. Second, the video recording of 
students was accomplished discreetly (e.g., not making noise or 
displaying a red light during recording). If the act of recording 
were obtrusive, students would likely become distracted and 
self-conscious, perhaps resulting in inhibition of facial 
expression. However, as noted in SECTION III, we observed 
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that students did not attend to the recording devices during the 
tutoring sessions.  

The analyses highlight ways in which intensity and 
frequency of facial action unit displays are associated with 
normalized learning gains and summative self-reports of 
frustration. Each facial action unit has been explored in prior 
research. Thus, we consider the key results in light of past 
findings and theoretical implications of each facial action unit.  

Both intensity and frequency of outer brow raising (AU2) 
were negatively correlated with normalized learning gain, 
based on AU2 displays at the beginning of tutoring sessions 
and throughout tutoring sessions. Based on prior literature, 
AU2 may be associated with frustration, surprise, or anxiety. 
AU2 has been identified as a component of frustration (along 
with AU1) in prior intelligent tutoring systems literature, with 
correlations of AU1 and AU2 displays and students’ emote-
aloud self-reports of frustration [2]. Similarly to frustration, 
AU1 and AU2 together are components of the prototypical 
expression of surprise [9]. However, frustration and surprise do 
not seem consistent with the results of the correlational 
analyses because AU1 was absent from the significant 
correlations.  

Anxiety has been linked to prototypical displays of fear 
(AU1+AU2+AU4+AU5+AU25; AU5 is eyelid opening, AU25 
is mouth opening) [27]. While this combination of AUs seems 
similar to those of frustration and surprise, the presence of 
AU4 introduces a conflicting movement of the brow that may 
impact detection of the expression. Fig. 4 shows an example of 
AU1+AU2+AU4 (also shown are the moments before and 
after the facial expression—just before onset and after offset). 
The CERT output values from the apex of the facial expression 
show an interaction between AU1 and AU4. AU1 raises the 
inner eyebrows, while AU4 lowers the inner brow. The result 
of AU1+AU2+AU4 is tensing of the inner brow with creasing 
across the forehead, as is apparent in Fig. 4 to a FACS coder. 
This conflict of facial movements at the inner brow may result 
in reduced CERT output values for both AU1 and AU4. This 
complication of CERT output may explain how only AU2 was 
negatively correlated with normalized learning gain. It also 
indicates that anxiety may be the most consistent interpretation 
of AU2. 

Brow lowering (AU4) intensity at the beginning of sessions 
and throughout sessions was positively correlated with 
summative self-reports of frustration. AU4 has long been noted 
as an indicator of mental effort, notably mentioned by Darwin 
[21]. AU4 has also been correlated with self-reports and 
judgments of confusion in intelligent tutoring systems research 
[2]. In this interpretation, AU4 at the beginning of sessions 
may have indicated effortful thinking and confusion. It is 
possible that such confusion may have gone unresolved, 
resulting in frustration.  

Mouth dimpling (AU14) intensity at the beginning of 
sessions positively correlated with frustration, while AU14 
frequency at the end of sessions positively correlated with 
normalized learning gain. Unilateral AU14 is a component of a 
prototypical expression of contempt [28]. However, students 
were observed to frequently display bilateral AU14 in our 
corpus, as in Fig. 5. Prior literature provides slight evidence of 
correlation between AU14 and frustration, with a statistical 
trend that AU14 occurred during student emote-aloud self-

reports of frustration [2]. In the same study, expert judges did 
not identify AU14 as an indicator of frustration. We observed 
that AU14 appeared as a frequent ‘mouth fidgeting’ movement 
in our corpus. Thus, AU14 may be easily overlooked by judges 
of emotion as noise, since it occurs frequently over time, 
similar to blinking or brow lowering. As an affective feature, 
AU14 does seem to be a facial indicator that repeatedly occurs 
over time and coincides with a thoughtful state, as suggested 
by a prior study [21]. The correlation between intensity of 
AU14 displays at the beginning of sessions and frustration may 
parallel the discussion of AU4 above. It is possible that 
effortful thought or confusion transitioned to frustration [1], 
[2]. Additionally, the correlation of AU14 at the end of the 
session with normalized learning gain suggests that students 
who were concentrating more at the end of the session tended 
to have increased learning gain. 

The early prediction results illustrate that facial expression 
at the beginning of tutoring sessions may provide a useful set 
of features for early diagnosis of affective states related to post-
session outcomes. The models presented here are descriptive 
and are not designed to be used for intervention, but richer 
models may be constructed using machine learning techniques. 
Further models may incorporate timing of facial expression 
and learning task context to increase predictive accuracy. 

VIII. CONCLUSION AND FUTURE WORK 
Cognition and emotion pervade human experience, with 

tutorial interactions being particularly rich in cognitive-
affective phenomena. The close coupling of cognitive and 
affective dimensions require that integrated models of 
cognition and affect inform the design of intelligent tutoring 
systems. In a step toward realizing this goal, we have 
investigated relations among automatically detected facial 
action units, affective outcomes, and learning gains in a 
computer-mediated human tutoring corpus. This investigation 
first identified several strong statistical relationships between 
AU2 (outer brow raise) with learning, AU4 (brow lowering) 
with frustration, and AU14 (mouth dimpling) with both 
frustration and learning. Additionally, observing these facial 
action units during the first five minutes of tutoring 
contributes to predicting self-reports at the end of the session. 
It is hoped that similar analyses may continue the trend toward 
developing a greater understanding of learning-centered 
affective states to lay the groundwork for data-driven design 
of affective tutorial intervention. 

This study highlights the potential for large-scale analyses 
of moment-by-moment affect in tutoring. Aside from 
frequency and intensity, there remains much to discover about 
facial expressions of learning-centered affect. For example, 
the temporal characteristics of facial expression in tutoring are 
largely unexplored. We have noted that AU4 (brow lowering) 
and other thoughtful expressions may extend over long 
periods of time. Automated facial action unit tracking allows 
for close examination of persistence of cognitive-affective 
states, so theoretical transitions among learning-centered 
affective states may be tested at fine temporal granularity. 
Additionally, coincidence of learning task context and facial 
expression may also be investigated. With a solid, statistically 
grounded foundation for learning-centered affect, future 
intelligent tutoring systems may achieve dynamic affective 
responsiveness that rivals that of the best human tutors. 
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