Problem 1-1

<table>
<thead>
<tr>
<th></th>
<th>1 sec</th>
<th>1 minute</th>
<th>1 hour</th>
<th>1 day</th>
<th>1 month</th>
<th>1 year</th>
<th>1 century</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log n)</td>
<td>(2^{10^6})</td>
<td>(26.10^6)</td>
<td>(2^{36.10^8})</td>
<td>(2^{2864.10^8})</td>
<td>(2^{2592.10^9})</td>
<td>(2^{94608.10^{10}})</td>
<td>(2^{94608.10^{12}})</td>
</tr>
<tr>
<td>(\sqrt{n})</td>
<td>(10^{12})</td>
<td>(36.10^{14})</td>
<td>(1296.10^{16})</td>
<td>(746496.10^{18})</td>
<td>(6718464.10^{18})</td>
<td>(8950673664.10^{20})</td>
<td>(8950673664.10^{24})</td>
</tr>
<tr>
<td>(n)</td>
<td>(10^6)</td>
<td>(6.10^7)</td>
<td>(36.10^8)</td>
<td>(864.10^9)</td>
<td>(2592.10^9)</td>
<td>(94608.10^{10})</td>
<td>(94608.10^{12})</td>
</tr>
<tr>
<td>(n \log n)</td>
<td>(62746)</td>
<td>(2801417)</td>
<td>(13.10^7)</td>
<td>(27.10^8)</td>
<td>(67.10^9)</td>
<td>(8.10^{10})</td>
<td>(69.10^{12})</td>
</tr>
<tr>
<td>(n^2)</td>
<td>(1000)</td>
<td>(7445)</td>
<td>(60000)</td>
<td>(293938)</td>
<td>(1609968)</td>
<td>(30758413)</td>
<td>(307584134)</td>
</tr>
<tr>
<td>(n^3)</td>
<td>(100)</td>
<td>(391)</td>
<td>(1532)</td>
<td>(4420)</td>
<td>(13736)</td>
<td>(98169)</td>
<td>(455661)</td>
</tr>
<tr>
<td>(2^n)</td>
<td>(19)</td>
<td>(25)</td>
<td>(31)</td>
<td>(36)</td>
<td>(41)</td>
<td>(49)</td>
<td>(56)</td>
</tr>
<tr>
<td>(n!)</td>
<td>(9)</td>
<td>(11)</td>
<td>(12)</td>
<td>(13)</td>
<td>(15)</td>
<td>(17)</td>
<td>(18)</td>
</tr>
</tbody>
</table>
PROBLEM 2-4

a. (8, 6), (2, 1), (3, 1), (8, 1), (6, 1)

b. The array with the descending order has the most inversions. Since all pairs are inversions the number of inversions is \(\binom{n}{2} \).

c. Let \(A \) be an array with \(n \) elements.

Let \(inv_i \) be the number of inversions of \(A \) with the second element \(A_i \).

Let \(INV \) be the number of all inversions in the array. Then, \(INV = \sum_{i=2}^{n} inv_i \)

We can see that the number of iterations of the while loop in the pseudocode of insertion sort is \(inv_i \). Then we can denote the running time of the insertion sort as:

\[
T(n) = \sum_{i=2}^{n} (\theta(1) + \theta(inv_i)) = \sum_{i=2}^{n} \theta(1) + \sum_{i=2}^{n} \theta(inv_i) = \theta(n) + \theta(INV) = \theta(n + INV)
\]
d. The following algorithm finds the number of inversions with the parameters (A, 1, n)

```
Find-Inversions (A, left, right)
    if left<right
        middle = (left+right)/2
        inversions = Find-Inversions(A, left, middle)
        inversions = inversions + Find-Inversions(A, middle+1, right)
        inversions = inversions + Merge(A, left, middle, right)
    return inversions

Merge (A, left, middle, right)
    n1 = middle-left+1
    n2 = right-middle
    Copy the elements A[left..middle] to L[1..n1]
    Copy the elements A[middle+1..right] to R[1..n2]
    inversions = 0
    i = 1
    j = 1
    k = left
    while i<=n1 and j<=n2
        if L[i] <= R[j]
            A[k] = L[i]
            i = i+1
            inversions = inversions + (j - 1)
        else
            A[k] = R[j]
            j = j+1
        k = k+1
    if i>n1
        Copy R[j..n2] to A[middle+j..right]
    else
        Copy L[i..n1] to A[right-n1+i..right]
    inversions = inversions + (j-1)*(n1-i+1)
    return inversions
```
Problem 3-4

a. False. Counter-example: \(f(n) = n \) and \(g(n) = n^2 \).

b. False. Counter-example: \(f(n) = n \) and \(g(n) = n^2 \).

c. True.
\[f(n) = O(g(n)) \Rightarrow \exists c \text{ s.t. } f(n) \leq c \cdot g(n) \text{ for sufficiently large } n. \]
If we get the log of both sides, we have \(\log(f(n)) \leq \log(c \cdot g(n)) = \log(c) + \log(g(n)) \)
Since \(\log(g(n)) \) is a non-convergent monotonically increasing function, and \(\log(c) \) is constant, there exists an \(n_0 \), such that \(\log(c) \leq \log(g(n)) \) for \(n > n_0 \).

d. False. Counter-example: \(f(n) = n \) and \(g(n) = n/2 \)

e. False. Counter-example: \(f(n) = 1/n \)

f. True.
\[f(n) = O(g(n)) \Rightarrow \exists c \text{ s.t. } f(n) \leq c \cdot g(n) \Rightarrow 1/c \cdot f(n) \leq g(n) \]

g. False. Counter-example: \(f(n) = 2^n \)

h. True.
\[g(n) = o(f(n)) \Rightarrow \exists c \text{ s.t. } g(n) \leq c \cdot f(n) \text{ for sufficiently large } n. \]
Therefore \(f(n) \leq g(n) + f(n) \leq (1+c) \cdot f(n) \)
PROBLEM 4-6

a. Necessity proof:
Let \(k = i+1 \) and \(l = j+1 \).
Then we have \(A[i, j] + A[i+1, j+1] \leq A[i+1, j] + A[i, j+1] \)

Sufficiency proof:
Induction on columns
Basis:

Induction hypothesis:

From the basis we have:

From the induction hypothesis, we have

When we add (1) and (2) side by side we yield:

Induction on rows
Basis:

Induction hypothesis:
Suppose \(A[i, j] + A[i+r, l] \leq A[i+r, j] + A[i, l] \) is correct where \(0 < i+r < k \)

From the basis we have:

From the induction hypothesis, we have

When we add (3) and (4) side by side we yield:

QED

b. There are several different solutions one of which is incrementing \(A[1, 3] \) by three.
c. Suppose that the expression is not correct. Then there exists an \(f(i) \) s.t. \(f(i) > f(i+1) \). This yields \(A[i, f(i+1)] + A[i+1, f(i)] > A[i, f(i)] + A[i+1, f(i+1)] \), which is a contradiction. QED

d. Since we find all the even-numbered rows results recursively, we just need to search over the odd numbered rows. We can continue this step until \(m \) becomes 1. Let we assign \(f(0) = 0 \) and \(f(m+1) = n \). Then for an odd-numbered row \(2*i-1 \) where \(1 \leq 2*i-1 \leq n \), we can just find the minimum element in \(A[2*i-1, f(2*i-2), f(2*i)] \). The running time of one iteration is:

\[
O\left(\sum_{i=1}^{[m/2]} (f(2i) - f(2i - 2) + 1) \right) = O(m + n)
\]

e.

\[
T(m, n) = T\left(\frac{m}{2}, n \right) + O(m + n) = \sum_{i=1}^{\log m} O\left(\frac{m}{2^i} + n \right) = O(n \log m) + O\left(\sum_{i=1}^{\log m} \frac{m}{2^i} \right) = O(n \log m) + O(2m) = O(m + n \log m)
\]
PROBLEM 7-2

a. When all elements are equal, randomized partition divides the elements into two with \(n-1 \) and 0 elements. So \(T(n) = T(n-1) + \Theta(n) = \Theta(n^2) \).

b.
\[
\text{Partition'}(A, p, r) \\
x = A[r] \\
i = p-1 \\
k = i \\
\text{for } j=p \text{ to } r-1 \\
\quad \text{if } A[j] < x \\
\quad \quad k = k+1 \\
\quad \quad \text{exchange } A[j] \text{ with } A[k] \\
\quad \quad i = i+1 \\
\quad \quad \text{exchange } A[i] \text{ with } A[k] \\
\quad \text{else if } A[j] == x \\
\quad \quad k = k+1 \\
\quad \quad \text{exchange } A[j] \text{ with } A[k] \\
\text{exchange } A[k+1] \text{ with } A[r] \\
\text{return } (i+1, k+1)
\]

c. Randomized-Partition's code is the same except it returns two values.

\[
\text{Randomized-Quicksort'}(A, p, r) \\
\text{if } p<r \\
\quad (q, t) = \text{Randomized-Partition'}(A, p, r) \\
\quad \text{Randomized-Quicksort'}(A, p, q-1) \\
\quad \text{Randomized-Quicksort'}(A, t+1, r)
\]

d. Let \(n' \) be the number of distinct elements in the array. Let \(z_i', z_2', z_3' \ldots \) be the sorted array of distinct numbers in the array. Let \(n_i \) be the number of occurrences of \(z_i' \). Let \(m_i \) be the number of elements of the array that are lower than \(z_i' \).

Since an element which is equal to the pivot finds its final place just after the partition, it cannot be chosen as a pivot later. Therefore two values can be compared at most in one partition method. The probability of comparing \(z_i' \) with \(z_j' \) is \(\frac{n_i}{m_j - m_i + n_j} \) if \(z_i' \) is chosen as the pivot and the number of comparisons will be \(n' \). A record with a value is compared with the other records with the same value \(n_i - 1 \) times. Hence the expected value is:

\[
E[X] = \sum_{i=1}^{n'-1} \sum_{j=i+1}^{n'} \frac{2n_in_j}{m_j - m_i + n_j} + \sum_{i=1}^{n'} (n_i - 1) = n - n' + 2 \sum_{i=1}^{n'-1} \sum_{j=i+1}^{n'} \frac{n_in_j}{m_j - m_i + n_j}
\]