Single-Source All-Destinations
Shortest Paths With Negative Costs

- Directed weighted graph.
- Edges may have negative cost.
- No cycle whose cost is < 0.
- Find a shortest path from a given source vertex s to each of the n vertices of the digraph.
Single-Source All-Destinations Shortest Paths With Negative Costs

- Dijkstra’s $O(n^2)$ single-source greedy algorithm doesn’t work when there are negative-cost edges.
- Floyd’s $\Theta(n^3)$ all-pairs dynamic-programming algorithm does work in this case.
Bellman-Ford Algorithm

• Single-source all-destinations shortest paths in digraphs with negative-cost edges.
• Uses dynamic programming.
• Runs in $O(n^3)$ time when adjacency matrices are used.
• Runs in $O(ne)$ time when adjacency lists are used.
Decision Sequence

- To construct a shortest path from the source to vertex v, decide on the max number of edges on the path and on the vertex that comes just before v.
- Since the digraph has no cycle whose length is < 0, we may limit ourselves to the discovery of cycle-free (acyclic) shortest paths.
- A path that has no cycle has at most n-1 edges.
Problem State

- Problem state is given by \((u,k)\), where \(u\) is the destination vertex and \(k\) is the max number of edges.
- \((v,n-1)\) is the state in which we want the shortest path to \(v\) that has at most \(n-1\) edges.
Cost Function

- Let $d(v,k)$ be the length of a shortest path from the source vertex to vertex v under the constraint that the path has at most k edges.
- $d(v,n-1)$ is the length of a shortest unconstrained path from the source vertex to vertex v.
- We want to determine $d(v,n-1)$ for every vertex v.
Value Of $d(*,0)$

- $d(v,0)$ is the length of a shortest path from the source vertex to vertex v under the constraint that the path has at most 0 edges.

- $d(s,0) = 0$.
- $d(v,0) = \text{infinity}$ for $v \neq s$.
Recurrence For $d(\ast,k)$, $k > 0$

- $d(v,k)$ is the length of a shortest path from the source vertex to vertex v under the constraint that the path has at most k edges.
- If this constrained shortest path goes through no edge, then $d(v,k) = d(v,0)$.
Recurrence For $d(\ast,k)$, $k > 0$

- If this constrained shortest path goes through at least one edge, then let w be the vertex just before v on this shortest path (note that w may be s).

- We see that the path from the source to w must be a shortest path from the source vertex to vertex w under the constraint that this path has at most $k-1$ edges.

- $d(v,k) = d(w,k-1) + \text{length of edge } (w,v)$.
Recurrence For \(d(\ast,k), \ k > 0 \)

- \(d(v,k) = d(w,k-1) + \text{length of edge } (w,v) \).

- We do not know what \(w \) is.

- We can assert
 - \(d(v,k) = \min\{d(w,k-1) + \text{length of edge } (w,v)\} \), where the \(\min \) is taken over all \(w \) such that \((w,v) \) is an edge of the digraph.

- Combining the two cases considered yields:
 - \(d(v,k) = \min\{d(v,0), \min\{d(w,k-1) + \text{length of edge } (w,v)\}\} \)
Pseudocode To Compute $d(\ast,\ast)$

// initialize $d(\ast,0)$
$d(s,0) = 0$;
$d(v,0) = \infty$, $v \neq s$;

// compute $d(\ast,k)$, $0 < k < n$
for (int $k = 1$; $k < n$; $k++$)
{
 $d(v,k) = d(v,0)$, $1 \leq v \leq n$;
 for (each edge (u,v))
 $d(v,k) = \min\{d(v,k), d(u,k-1) + \text{cost}(u,v)\}$
}
Complexity

- $\Theta(n)$ to initialize $d(\ast,0)$.
- $\Theta(n^2)$ to compute $d(\ast,k)$ for each $k > 0$ when adjacency matrix is used.
- $\Theta(e)$ to compute $d(\ast,k)$ for each $k > 0$ when adjacency lasts are used.
- Overall time is $\Theta(n^3)$ when adjacency matrix is used.
- Overall time is $\Theta(ne)$ when adjacency lists are used.
- $\Theta(n^2)$ space needed for $d(\ast,\ast)$.
Let $p(v,k)$ be the vertex just before vertex v on the shortest path for $d(v,k)$.

- $p(v,0)$ is undefined.

- Used to construct shortest paths.
Example

Source vertex is 1.
Example

\[
d(v,k) \quad p(v,k)
\]

\[
\begin{array}{cccccc}
0 & - & - & - & - & - \\
1 & 0 & 3 & -7 & - & - \\
2 & 0 & 3 & 7 & 7 & 16 & 8 \\
3 & 0 & 2 & 7 & 7 & 10 & 8 \\
4 & 0 & 2 & 6 & 7 & 10 & 8 \\
\end{array}
\]

\[
\begin{array}{cccccc}
- & - & - & - & - & - \\
9 & -1 & -1 & - & - & - \\
2 & -1 & 2 & 1 & 4 & 4 \\
3 & -6 & 2 & 1 & 3 & 4 \\
4 & -6 & 2 & 1 & 3 & 4 \\
\end{array}
\]
Example

d(v,k) p(v.k)

1 2 3 4

5 6

v

k
Shortest Path From 1 To 5

Graph with nodes 1, 2, 3, 4, 5, 6 and edges labeled with distances.

Distance table (d(v,5)):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

Parent table (p(v,5)):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Observations

- \(d(v,k) = \min\{d(v,0), \min\{d(w,k-1) + \text{length of edge } (w,v)\}\} \)
- \(d(s,k) = 0 \) for all \(k \).
- If \(d(v,k) = d(v,k-1) \) for all \(v \), then \(d(v,j) = d(v,k-1) \), for all \(j >= k-1 \) and all \(v \).
- If we stop computing as soon as we have a \(d(\ast,k) \) that is identical to \(d(\ast,k-1) \) the run time becomes
 - \(O(n^3) \) when adjacency matrix is used.
 - \(O(ne) \) when adjacency lists are used.
Observations

• The computation may be done in-place.
 \[d(v) = \min\{d(v), \min\{d(w) + \text{length of edge } (w,v)\}\} \]
 instead of
 \[d(v,k) = \min\{d(v,0),\]
 \[\quad \min\{d(w,k-1) + \text{length of edge } (w,v)\}\}\]

• Following iteration \(k \), \(d(v,k+1) \leq d(v) \leq d(v,k) \)

• On termination \(d(v) = d(v,n-1) \).

• Space requirement becomes \(O(n) \) for \(d(*) \) and \(p(*) \).