All-Pairs Shortest Paths

• Given an \(n \)-vertex directed weighted graph, find a shortest path from vertex \(i \) to vertex \(j \) for each of the \(n^2 \) vertex pairs \((i,j)\).
Dijkstra’s Single Source Algorithm

• Use Dijkstra’s algorithm n times, once with each of the n vertices as the source vertex.
Performance

• Time complexity is $O(n^3)$ time.
• Works only when no edge has a cost < 0.
Dynamic Programming Solution

• Time complexity is $\Theta(n^3)$ time.
• Works so long as there is no cycle whose length is < 0.
• When there is a cycle whose length is < 0, some shortest paths aren’t finite.
 ▪ If vertex 1 is on a cycle whose length is -2, each time you go around this cycle once you get a 1 to 1 path that is 2 units shorter than the previous one.
• Simpler to code, smaller overheads.
• Known as Floyd’s shortest paths algorithm.
• First decide the highest intermediate vertex (i.e., largest vertex number) on the shortest path from \(i \) to \(j \).
• If the shortest path is \(i, 2, 6, 3, 8, 5, 7, j \) the first decision is that vertex 8 is an intermediate vertex on the shortest path and no intermediate vertex is larger than 8.
• Then decide the highest intermediate vertex on the path from \(i \) to 8, and so on.
• \((i,j,k)\) denotes the problem of finding the shortest path from vertex \(i\) to vertex \(j\) that has no intermediate vertex larger than \(k\).

• \((i,j,n)\) denotes the problem of finding the shortest path from vertex \(i\) to vertex \(j\) (with no restrictions on intermediate vertices).
Let $c(i,j,k)$ be the length of a shortest path from vertex i to vertex j that has no intermediate vertex larger than k.
$c(i,j,n)$

- $c(i,j,n)$ is the length of a shortest path from vertex i to vertex j that has no intermediate vertex larger than n.
- No vertex is larger than n.
- Therefore, $c(i,j,n)$ is the length of a shortest path from vertex i to vertex j.
$c(i,j,0)$

- $c(i,j,0)$ is the length of a shortest path from vertex i to vertex j that has no intermediate vertex larger than 0.
 - Every vertex is larger than 0.
 - Therefore, $c(i,j,0)$ is the length of a single-edge path from vertex i to vertex j.
Recurrence For $c(i,j,k)$, $k > 0$

- The shortest path from vertex i to vertex j that has no intermediate vertex larger than k may or may not go through vertex k.
- If this shortest path does not go through vertex k, the largest permissible intermediate vertex is $k-1$. So the path length is $c(i,j,k-1)$.

![Diagram](image-url)
Recurrence For $c(i,j,k)$, $k > 0$

- Shortest path goes through vertex k.

- We may assume that vertex k is not repeated because no cycle has negative length.

- Largest permissible intermediate vertex on i to k and k to j paths is $k-1$.
Recurrence For $c(i,j,k)$, $k > 0$

- i to k path must be a shortest i to k path that goes through no vertex larger than $k-1$.

- If not, replace current i to k path with a shorter i to k path to get an even shorter i to j path.
Recurrence For $c(i,j,k)$, $k > 0$

- Similarly, k to j path must be a shortest k to j path that goes through no vertex larger than $k-1$.
- Therefore, length of i to k path is $c(i,k,k-1)$, and length of k to j path is $c(k,j,k-1)$.
- So, $c(i,j,k) = c(i,k,k-1) + c(k,j,k-1)$.
Combining the two equations for $c(i,j,k)$, we get

$$c(i,j,k) = \min\{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)\}.$$

We may compute the $c(i,j,k)$s in the order $k = 1, 2, 3, \ldots, n$.

Recurrence For $c(i,j,k)$, $k > 0$
Floyd’s Shortest Paths Algorithm

for (int k = 1; k <= n; k++)
 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= n; j++)
 c(i,j,k) = min{c(i,j,k-1),
 c(i,j,k-1) + c(k,j,k-1)};

• Time complexity is $O(n^3)$.
 - More precisely $\Theta(n^3)$.
 - $\Theta(n^3)$ space is needed for $c(*,*,*)$.
Space Reduction

- \(c(i,j,k) = \min\{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)\} \)

- When neither \(i \) nor \(j \) equals \(k \), \(c(i,j,k-1) \) is used only in the computation of \(c(i,j,k) \).

- So \(c(i,j,k) \) can overwrite \(c(i,j,k-1) \).
Space Reduction

- \(c(i,j,k) = \min\{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)\} \)
- When \(i \) equals \(k \), \(c(i,j,k-1) \) equals \(c(i,j,k) \).
 - \(c(k,j,k) = \min\{c(k,j,k-1), c(k,k,k-1) + c(k,j,k-1)\} \)
 = \min\{c(k,j,k-1), 0 + c(k,j,k-1)\}
 = c(k,j,k-1)
- So, when \(i \) equals \(k \), \(c(i,j,k) \) can overwrite \(c(i,j,k-1) \).
- Similarly when \(j \) equals \(k \), \(c(i,j,k) \) can overwrite \(c(i,j,k-1) \).
- So, in all cases \(c(i,j,k) \) can overwrite \(c(i,j,k-1) \).
Floyd’s Shortest Paths Algorithm

\[
\text{for (int } k = 1; k \leq n; k++) \\
\quad \text{for (int } i = 1; i \leq n; i++) \\
\quad \quad \text{for (int } j = 1; j \leq n; j++) \\
\quad \quad \quad c(i,j) = \min\{c(i,j), c(i,k) + c(k,j)\};
\]

- Initially, \(c(i,j) = c(i,j,0) \).
- Upon termination, \(c(i,j) = c(i,j,n) \).
- Time complexity is \(\Theta(n^3) \).
- \(\Theta(n^2) \) space is needed for \(c(*,*) \).
Building The Shortest Paths

- Let $\text{kay}(i,j)$ be the largest vertex on the shortest path from i to j.
- Initially, $\text{kay}(i,j) = 0$ (shortest path has no intermediate vertex).

```c
for (int k = 1; k <= n; k++)
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            if (c(i,j) > c(i,k) + c(k,j))
                {kay(i,j) = k; c(i,j) = c(i,k) + c(k,j);}
```
Example

Initial Cost Matrix

\[c(*,*) = c(*,*,0) \]
Final Cost Matrix $c(\ast,\ast) = c(\ast,\ast,n)$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>6</th>
<th>5</th>
<th>1</th>
<th>10</th>
<th>13</th>
<th>14</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>15</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>0</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>20</td>
<td>0</td>
<td>9</td>
<td>12</td>
<td>13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>13</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>15</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
Shortest path from 1 to 7.
Path length is 14.
Build A Shortest Path

The path is 1 4 2 5 8 6 7.

• kay(1,7) = 8
 1 → 8 → 7

• kay(1,8) = 5
 1 → 5 → 8 → 7

• kay(1,5) = 4
 1 → 4 → 5 → 8 → 7
Build A Shortest Path

- The path is 1 4 2 5 8 6 7.

- \(k_{ay}(1,4) = 0 \)

- \(k_{ay}(4,5) = 2 \)

- \(k_{ay}(4,2) = 0 \)
Build A Shortest Path

<table>
<thead>
<tr>
<th></th>
<th>0 4 0 0 4 8 8 5</th>
<th>8 0 8 5 0 8 8 5</th>
<th>7 0 0 5 0 0 6 5</th>
<th>8 0 8 0 2 8 8 5</th>
<th>8 4 8 0 0 8 8 0</th>
<th>7 7 7 7 7 0 0 7</th>
<th>0 4 1 1 4 8 0 0</th>
<th>7 7 7 7 7 0 6 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The path is 1 4 2 5 8 6 7.</td>
<td>1 4 2 ➔ 5 ➔ 8 ➔ 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kay(2,5) = 0</td>
<td>kay(5,8) = 0</td>
<td>kay(8,7) = 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 4 2 5 ➔ 8 ➔ 7</td>
<td>1 4 2 5 8 ➔ 7</td>
<td>1 4 2 5 8 ➔ 6 ➔ 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Build A Shortest Path

• The path is 1 4 2 5 8 6 7.
 1 4 2 5 8 → 6 → 7

• \(\text{kay}(8,6) = 0\)
 1 4 2 5 8 6 → 7

• \(\text{kay}(6,7) = 0\)
 1 4 2 5 8 6 7
void outputPath(int i, int j)
{
 // does not output first vertex (i) on path
 if (i == j) return;
 if (kay[i][j] == 0) // no intermediate vertices on path
 cout << j << " ";
 else { // kay[i][j] is an intermediate vertex on the path
 outputPath(i, kay[i][j]);
 outputPath(kay[i][j], j);
 }
}
Time Complexity Of outputPath

$O(\text{number of vertices on shortest path})$