Divide-And-Conquer Sorting

• Small instance.
 ▪ $n \leq 1$ elements.
 ▪ $n \leq 10$ elements.
 ▪ We’ll use $n \leq 1$ for now.

• Large instance.
 ▪ Divide into $k \geq 2$ smaller instances.
 ▪ $k = 2, 3, 4, \ldots$?
 ▪ What does each smaller instance look like?
 ▪ Sort smaller instances recursively.
 ▪ How do you combine the sorted smaller instances?
Insertion Sort

- $k = 2$
- First $n - 1$ elements (a[0:n-2]) define one of the smaller instances; last element (a[n-1]) defines the second smaller instance.
- a[0:n-2] is sorted recursively.
- a[n-1] is a small instance.
Insertion Sort

• Combining is done by inserting $a[n-1]$ into the sorted $a[0:n-2]$.

• Complexity is $O(n^2)$.

• Usually implemented nonrecursively.
Selection Sort

- k = 2
- To divide a large instance into two smaller instances, first find the largest element.
- The largest element defines one of the smaller instances; the remaining n-1 elements define the second smaller instance.
Selection Sort

- The second smaller instance is sorted recursively.
- Append the first smaller instance (largest element) to the right end of the sorted smaller instance.
- Complexity is $O(n^2)$.
- Usually implemented nonrecursively.
Bubble Sort

• Bubble sort may also be viewed as a \(k = 2 \) divide-and-conquer sorting method.

• Insertion sort, selection sort and bubble sort divide a large instance into one smaller instance of size \(n - 1 \) and another one of size \(1 \).

• All three sort methods take \(O(n^2) \) time.
Divide And Conquer

- Divide-and-conquer algorithms generally have best complexity when a large instance is divided into smaller instances of approximately the same size.
- When $k = 2$ and $n = 24$, divide into two smaller instances of size 12 each.
- When $k = 2$ and $n = 25$, divide into two smaller instances of size 13 and 12, respectively.
Merge Sort

- $k = 2$
- First $\text{ceil}(n/2)$ elements define one of the smaller instances; remaining $\text{floor}(n/2)$ elements define the second smaller instance.
- Each of the two smaller instances is sorted recursively.
- The sorted smaller instances are combined using a process called merge.
- Complexity is $O(n \log n)$.
- Usually implemented nonrecursively.
Merge Two Sorted Lists

- \(A = (2, 5, 6) \)
 - \(B = (1, 3, 8, 9, 10) \)
 - \(C = () \)

- Compare smallest elements of \(A \) and \(B \) and merge smaller into \(C \).

- \(A = (2, 5, 6) \)
 - \(B = (3, 8, 9, 10) \)
 - \(C = (1) \)
Merge Two Sorted Lists

• $A = (5, 6)$
 $B = (3, 8, 9, 10)$
 $C = (1, 2)$

• $A = (5, 6)$
 $B = (8, 9, 10)$
 $C = (1, 2, 3)$

• $A = (6)$
 $B = (8, 9, 10)$
 $C = (1, 2, 3, 5)$
Merge Two Sorted Lists

- $A = ()$
 $B = (8, 9, 10)$
 $C = (1, 2, 3, 5, 6)$
- When one of A and B becomes empty, append the other list to C.
- $O(1)$ time needed to move an element into C.
- Total time is $O(n + m)$, where n and m are, respectively, the number of elements initially in A and B.
Merge Sort

[8, 3, 13, 6, 2, 14, 5, 9, 10, 1, 7, 12, 4]

[8, 3, 13, 6, 2, 14, 5]

[8, 3, 13, 6] [2, 14, 5]

[8, 3] [13, 6] [2, 14] [5]

[8] [3] [13] [6] [2] [14]

[9, 10, 1, 7, 12, 4]

[9, 10, 1]

[9, 10] [1]

[9] [10]

[7, 12, 4]

[7, 12]

[7] [12]
Merge Sort

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14]

[2, 3, 5, 6, 8, 13, 14] [1, 4, 7, 9, 10, 12]

[3, 6, 8, 13] [2, 5, 14] [1, 9, 10] [4, 7, 12]

[3, 8] [6, 13] [2, 14] [5] [9, 10] [1] [7, 12] [4]

Time Complexity

• Let $t(n)$ be the time required to sort n elements.
• $t(0) = t(1) = c$, where c is a constant.
• When $n > 1$,
 $$t(n) = t(\text{ceil}(n/2)) + t(\text{floor}(n/2)) + dn,$$
 where d is a constant.
• To solve the recurrence, assume n is a power of 2 and use repeated substitution.
• $t(n) = O(n \log n)$.
Merge Sort

• Downward pass over the recursion tree.
 ▪ Divide large instances into small ones.
• Upward pass over the recursion tree.
 ▪ Merge pairs of sorted lists.
• Number of leaf nodes is n.
• Number of nonleaf nodes is $n-1$.
Time Complexity

- Downward pass.
 - $O(1)$ time at each node.
 - $O(n)$ total time at all nodes.

- Upward pass.
 - $O(n)$ time merging at each level that has a nonleaf node.
 - Number of levels is $O(\log n)$.
 - Total time is $O(n \log n)$.
Nonrecursive Version

- Eliminate downward pass.
- Start with sorted lists of size 1 and do pairwise merging of these sorted lists as in the upward pass.
Nonrecursive Merge Sort

[3, 8] [6, 13] [2, 14] [5, 9]

[3, 6, 8, 13] [2, 5, 9, 14]

[2, 3, 5, 6, 8, 9, 13, 14] [1, 7, 10, 12]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14]
Complexity

• Sorted segment size is $1, 2, 4, 8, \ldots$
• Number of merge passes is $\text{ceil}(\log_2 n)$.
• Each merge pass takes $O(n)$ time.
• Total time is $O(n \log n)$.
• Need $O(n)$ additional space for the merge.
• Merge sort is slower than insertion sort when $n \leq 15$ (approximately). So define a small instance to be an instance with $n \leq 15$.
• Sort small instances using insertion sort.
• Start with segment size = 15.
Natural Merge Sort

- Initial sorted segments are the naturally occurring sorted segments in the input.
- Input = [8, 9, 10, 2, 5, 7, 9, 11, 13, 15, 6, 12, 14].
- Initial segments are:
 [8, 9, 10] [2, 5, 7, 9, 11, 13, 15] [6, 12, 14]
- 2 (instead of 4) merge passes suffice.
- Segment boundaries have a[i] > a[i+1].
Quick Sort

- Small instance has \(n \leq 1 \). Every small instance is a sorted instance.
- To sort a large instance, select a pivot element from out of the \(n \) elements.
- Partition the \(n \) elements into 3 groups left, middle and right.
- The middle group contains only the pivot element.
- All elements in the left group are \(\leq \) pivot.
- All elements in the right group are \(\geq \) pivot.
- Sort left and right groups recursively.
- Answer is sorted left group, followed by sorted right group.
Example

| 6 | 2 | 8 | 5 | 11 | 10 | 4 | 1 | 9 | 7 | 3 |

Use 6 as the pivot.

| 2 | 5 | 4 | 1 | 3 | 6 | 7 | 9 | 10 | 11 | 8 |

Sort left and right groups recursively.
Choice Of Pivot

• Pivot is leftmost element in list that is to be sorted.
 ▪ When sorting a[6:20], use a[6] as the pivot.
 ▪ Text implementation does this.
• Randomly select one of the elements to be sorted as the pivot.
 ▪ When sorting a[6:20], generate a random number r in the range [6, 20]. Use a[r] as the pivot.
Choice Of Pivot

- **Median-of-Three rule.** From the leftmost, middle, and rightmost elements of the list to be sorted, select the one with median key as the pivot.
 - When sorting a[6:20], examine a[6], a[13] ((6+20)/2), and a[20]. Select the element with median (i.e., middle) key.
 - If a[6].key = 30, a[13].key = 2, and a[20].key = 10, a[20] becomes the pivot.
 - If a[6].key = 3, a[13].key = 2, and a[20].key = 10, a[6] becomes the pivot.
Choice Of Pivot

- If \(a[6].key = 30, a[13].key = 25, \) and \(a[20].key = 10, \) \(a[13] \) becomes the pivot.

- When the pivot is picked at random or when the median-of-three rule is used, we can use the quick sort code of the text provided we first swap the leftmost element and the chosen pivot.
Partitioning Into Three Groups

- Sort \(a = [6, 2, 8, 5, 11, 10, 4, 1, 9, 7, 3] \).
- Leftmost element (6) is the pivot.
- When another array \(b \) is available:
 - Scan \(a \) from left to right (omit the pivot in this scan), placing elements \(<= \) pivot at the left end of \(b \) and the remaining elements at the right end of \(b \).
 - The pivot is placed at the remaining position of the \(b \).
Partitioning Example Using Additional Array

Sort left and right groups recursively.
In-place Partitioning

• Find leftmost element (bigElement) > pivot.
• Find rightmost element (smallElement) < pivot.
• Swap bigElement and smallElement provided bigElement is to the left of smallElement.
• Repeat.
In-Place Partitioning Example

bigElement is not to left of smallElement, terminate process. Swap pivot and smallElement.
Complexity

- $O(n)$ time to partition an array of n elements.
- Let $t(n)$ be the time needed to sort n elements.
- $t(0) = t(1) = c$, where c is a constant.
- When $t > 1$,
 \[t(n) = t(|left|) + t(|right|) + dn, \]
 where d is a constant.
- $t(n)$ is maximum when either $|left| = 0$ or $|right| = 0$ following each partitioning.
Complexity

• This happens, for example, when the pivot is always the smallest element.
• For the worst-case time,
 \[t(n) = t(n-1) + dn, \quad n > 1 \]
• Use repeated substitution to get \(t(n) = O(n^2) \).
• The best case arises when |left| and |right| are equal (or differ by 1) following each partitioning.
• For the best case, the recurrence is the same as for merge sort.
Complexity Of Quick Sort

• So the best-case complexity is $O(n \log n)$.
• Average complexity is also $O(n \log n)$.
• To help get partitions with almost equal size, change in-place swap rule to:
 - Find leftmost element (bigElement) \geq pivot.
 - Find rightmost element (smallElement) \leq pivot.
 - Swap bigElement and smallElement provided bigElement is to the left of smallElement.
• $O(n)$ space is needed for the recursion stack. May be reduced to $O(\log n)$ (see Exercise 18.22).
Complexity Of Quick Sort

• To improve performance, define a small instance to be one with $n \leq 15$ (say) and sort small instances using insertion sort.
C++ STL sort Function

- Quick sort.
 - Switch to heap sort when number of subdiviions exceed some constant times \(\log_2 n \).
 - Switch to insertion sort when segment size becomes small.
C++ STL stable_sort Function

- Merge sort is **stable** (relative order of elements with equal keys is not changed).
- Quick sort is not stable.
- STL’s `stable_sort` is a merge sort that switches to insertion sort when segment size is small.