Union-Find Problem

• Given a set \(\{1, 2, \ldots, n\} \) of \(n \) elements.
• Initially each element is in a different set.
 - \(\{1\}, \{2\}, \ldots, \{n\} \)
• An intermixed sequence of union and find operations is performed.
• A union operation combines two sets into one.
 - Each of the \(n \) elements is in exactly one set at any time.
• A find operation identifies the set that contains a particular element.
Using Arrays And Chains

- See Section 6.5.4 for applications as well as for solutions that use arrays and chains.
- Best time complexity obtained in Section 6.5.4 is $O(n + u \log u + f)$, where u and f are, respectively, the number of union and find operations that are done.
- Using a tree (not a binary tree) to represent a set, the time complexity becomes almost $O(n + f)$ (assuming at least $n/2$ union operations).
A Set As A Tree

- $S = \{2, 4, 5, 9, 11, 13, 30\}$
- Some possible tree representations:
Result Of A Find Operation

- `find(i)` is to identify the set that contains element `i`.
- In most applications of the union-find problem, the user does not provide set identifiers.
- The requirement is that `find(i)` and `find(j)` return the same value iff elements `i` and `j` are in the same set.

```
  4
 / \
2   9
 \
 11
```

`find(i)` will return the element that is in the tree root.
Strategy For find(i)

- Start at the node that represents element i and climb up the tree until the root is reached.
- Return the element in the root.
- To climb the tree, each node must have a parent pointer.
Trees With Parent Pointers
Possible Node Structure

- Use nodes that have two fields: element and parent.
 - Use an array table[] such that table[i] is a pointer to the node whose element is i.
 - To do a find(i) operation, start at the node given by table[i] and follow parent fields until a node whose parent field is null is reached.
 - Return element in this root node.
Example

(Only some table entries are shown.)
Better Representation

- Use an integer array `parent[]` such that `parent[i]` is the element that is the parent of element `i`.

```
parent[] = [0, 5, 10, 15, 2, 9, 13, 13, 4, 5, 0]
```
Union Operation

- **union(i,j)**
 - i and j are the roots of two different trees, \(i \neq j \).
- To unite the trees, make one tree a subtree of the other.
 - parent[j] = i
Union Example

- union(7,13)
The Find Method

```java
public int find(int theElement)
{
    while (parent[theElement] != 0)
    {
        theElement = parent[theElement];  // move up
    }
    return theElement;
}
```
The Union Method

```java
public void unite(int rootA, int rootB) {
    parent[rootB] = rootA;
}
```
Time Complexity Of union()

- $O(1)$
Time Complexity of find()

- Tree height may equal number of elements in tree.
 - union(2,1), union(3,2), union(4,3), union(5,4)…

So complexity is \(O(u) \).
Unions and Find Operations

- $O(u + uf) = O(uf)$
- Time to initialize $\text{parent}[i] = 0$ for all i is $O(n)$.
- Total time is $O(n + uf)$.
- Worse than solution of Section 7.7!
- Back to the drawing board.
Smart Union Strategies

• union(7,13)

• Which tree should become a subtree of the other?
Height Rule

- Make tree with smaller height a subtree of the other tree.
- Break ties arbitrarily.

union(7, 13)
Weight Rule

- Make tree with fewer number of elements a subtree of the other tree.
- Break ties arbitrarily.

union(7, 13)
Implementation

- Root of each tree must record either its height or the number of elements in the tree.
- When a union is done using the height rule, the height increases only when two trees of equal height are united.
- When the weight rule is used, the weight of the new tree is the sum of the weights of the trees that are united.
Height Of A Tree

• Suppose we start with single element trees and perform unions using either the height or the weight rule.

• The height of a tree with \(p \) elements is at most \(\text{floor} \left(\log_2 p \right) + 1 \).

• Proof is by induction on \(p \). See text.
Sprucing Up The Find Method

- find(1)
- Do additional work to make future finds easier.
- a, b, c, d, e, f, and g are subtrees
Path Compaction

- Make all nodes on find path point to tree root.
- **find(1)**

Makes two passes up the tree.
Path Splitting

- Nodes on find path point to former grandparent.
- find(1)

a, b, c, d, e, f, and g are subtrees

Makes only one pass up the tree.
Path Halving

- Parent pointer in every other node on find path is changed to former grandparent.
- find(1)

Changes half as many pointers.
Time Complexity

• Ackermann’s function.
 - $A(i, j) = 2^j$, $i = 1$ and $j \geq 1$
 - $A(i, j) = A(i-1, 2)$, $i \geq 2$ and $j = 1$
 - $A(i, j) = A(i-1, A(i, j-1))$, $i, j \geq 2$

• Inverse of Ackermann’s function.
 - $\alpha(p, q) = \min\{z \geq 1 \mid A(z, p/q) > \log_2 q\}$, $p \geq q \geq 1$
Time Complexity

- Ackermann’s function grows very rapidly as i and j are increased.
 - $A(2,4) = 2^{65,536}$
- The inverse function grows very slowly.
 - $\alpha(p,q) < 5$ until $q = 2^{A(4,1)}$
 - $A(4,1) = A(2,16) >>>> A(2,4)$
- In the analysis of the union-find problem, q is the number, n, of elements; $p = n + f$; and $u \geq n/2$.
- For all practical purposes, $\alpha(p,q) < 5$.
Time Complexity

Theorem 11.2 [Tarjan and Van Leeuwen]
Let $T(f,u)$ be the maximum time required to process any intermixed sequence of f finds and u unions. Assume that $u \geq n/2$.

$$a*(n + f*\alpha(f+n, n)) \leq T(f,u) \leq b*(n + f*\alpha(f+n, n))$$

where a and b are constants.

These bounds apply when we start with singleton sets and use either the weight or height rule for unions and any one of the path compression methods for a find.