Binary Tree Traversal Methods

• In a traversal of a binary tree, each element of the binary tree is *visited* exactly once.

• During the *visit* of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken.
Binary Tree Traversal Methods

- Preorder
- Inorder
- Postorder
- Level order
template <class T>
void preOrder(binaryTreeNode<T> *t)
{
 if (t != NULL)
 {
 visit(t);
 preOrder(t->leftChild);
 preOrder(t->rightChild);
 }
}
Preorder Example (visit = print)

```
  a
 /|
/  |
```

a b c
Preorder Example (visit = print)

a b d g h e i c f j
Preorder Of Expression Tree

/ * + a b - c d + e f

Gives prefix form of expression!
Inorder Traversal

template <class T>
void inOrder(binaryTreeNode<T> *t)
{
 if (t != NULL)
 {
 inOrder(t->leftChild);
 visit(t);
 inOrder(t->rightChild);
 }
}
Inorder Example (visit = print)

b a c
Inorder Example (visit = print)

g d h b e i a f j c
Inorder By Projection (Squishing)
Inorder Of Expression Tree

Gives infix form of expression (sans parentheses)!
template <class T>
void postOrder(binaryTreeNode<T> *t)
{
 if (t != NULL)
 {
 postOrder(t->leftChild);
 postOrder(t->rightChild);
 visit(t);
 }
}
Postorder Example (visit = print)

```
b c a
```
Postorder Example (visit = print)

g h d i e b j f c a
Postorder Of Expression Tree

\[a \ b + c \ d - * e \ f + / \]

Gives postfix form of expression!
Traversals Applications

- Make a clone.
- Determine height.
- Determine number of nodes.
Level Order

Let t be the tree root.

while (t != NULL)
{
 visit t and put its children on a FIFO queue;
 if FIFO queue is empty, set t = NULL;
 otherwise, pop a node from the FIFO queue and call it t;
}

Level-Order Example (visit = print)
Binary Tree Construction

- Suppose that the elements in a binary tree are distinct.
- Can you construct the binary tree from which a given traversal sequence came?
- When a traversal sequence has more than one element, the binary tree is not uniquely defined.
- Therefore, the tree from which the sequence was obtained cannot be reconstructed uniquely.
Some Examples

preorder = ab

inorder = ab

postorder = ab

level order = ab
Binary Tree Construction

• Can you construct the binary tree, given two traversal sequences?
• Depends on which two sequences are given.
Preorder and postorder do not uniquely define a binary tree.

- Nor do preorder and level order (same example).
- Nor do postorder and level order (same example).
Inorder And Preorder

- inorder = g d h b e i a f j c
- preorder = a b d g h e i c f j
- Scan the preorder left to right using the inorder to separate left and right subtrees.
- a is the root of the tree; gdhbei are in the left subtree; fjc are in the right subtree.
Inorder And Preorder

• preorder = a b d g h e i c f j
• b is the next root; gdh are in the left subtree; ei are in the right subtree.
Inorder And Preorder

- preorder = a b d g h e i c f j
- d is the next root; g is in the left subtree; h is in the right subtree.
Inorder And Postorder

• Scan postorder from right to left using inorder to separate left and right subtrees.

• inorder = g d h b e i a f j c

• postorder = g h d i e b j f c a

• Tree root is a; gdhbei are in left subtree; fjc are in right subtree.
Inorder And Level Order

- Scan level order from left to right using inorder to separate left and right subtrees.

 - inorder = g d h b e i a f j c
 - level order = a b c d e f g h i j
 - Tree root is a; gdhbei are in left subtree; fjc are in right subtree.