Binary Tree Properties & Representation
Minimum Number Of Nodes

- Minimum number of nodes in a binary tree whose height is h.
- At least one node at each of first h levels.

Minimum number of nodes is h
Maximum Number Of Nodes

• All possible nodes at first \(h \) levels are present.

\[
\text{Maximum number of nodes} = 1 + 2 + 4 + 8 + \ldots + 2^{h-1} = 2^h - 1
\]
Number Of Nodes & Height

- Let n be the number of nodes in a binary tree whose height is h.
- $h \leq n \leq 2^h - 1$
- $\log_2(n+1) \leq h \leq n$
Full Binary Tree

• A full binary tree of a given height \(h \) has \(2^h - 1 \) nodes.

Height 4 full binary tree.
Numbering Nodes In A Full Binary Tree

- Number the nodes 1 through $2^h - 1$.
- Number by levels from top to bottom.
- Within a level number from left to right.
Node Number Properties

- Parent of node i is node $i / 2$, unless $i = 1$.
- Node 1 is the root and has no parent.
Node Number Properties

- Left child of node i is node $2i$, unless $2i > n$, where n is the number of nodes.
- If $2i > n$, node i has no left child.
Node Number Properties

- Right child of node i is node $2i+1$, unless $2i+1 > n$, where n is the number of nodes.
- If $2i+1 > n$, node i has no right child.
Complete Binary Tree With n Nodes

• Start with a full binary tree that has at least n nodes.
• Number the nodes as described earlier.
• The binary tree defined by the nodes numbered 1 through n is the unique n node complete binary tree.
• Complete binary tree with 10 nodes.
Binary Tree Representation

- Array representation.
- Linked representation.
Array Representation

- Number the nodes using the numbering scheme for a full binary tree. The node that is numbered i is stored in $\text{tree}[i]$.

```
   tree[] = [a, b, c, d, e, f, g, h, i, j]
```

```plaintext
          a
         /  \   
        b    c
       / \   /  
      d   e f   g
     / \ / \ /  
    h i j i j
```

```plaintext
   0  5 10
```
• An n node binary tree needs an array whose length is between $n+1$ and 2^n.
Linked Representation

• Each binary tree node is represented as an object whose data type is `binaryTreeNode`.
• The space required by an n node binary tree is \(n \times (\text{space required by one node}) \).
The Struct binaryTreeNode

template <class T>
struct binaryTreeNode
{
 T element;
 binaryTreeNode<T> *leftChild,
 *rightChild;
 binaryTreeNode()
 {
 leftChild = rightChild = NULL;
 }
 // other constructors come here
};
Linked Representation Example

- **Root**: a
- **Left Child**: b
 - **Left Child**: d
 - **Left Child**: f
 - **Right Child**: e
 - **Left Child**: g
 - **Right Child**: h

Key Elements:
- `leftChild`
- `element`
- `rightChild`
Some Binary Tree Operations

- Determine the height.
- Determine the number of nodes.
- Make a clone.
- Determine if two binary trees are clones.
- Display the binary tree.
- Evaluate the arithmetic expression represented by a binary tree.
- Obtain the infix form of an expression.
- Obtain the prefix form of an expression.
- Obtain the postfix form of an expression.
Binary Tree Traversal

• Many binary tree operations are done by performing a traversal of the binary tree.
• In a traversal, each element of the binary tree is visited exactly once.
• During the visit of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken.
Binary Tree Traversal Methods

• Preorder
• Inorder
• Postorder
• Level order