Nature Lover’s View Of A Tree

leaves

branches

root
Computer Scientist’s View

root

branches

nodes

leaves
Linear Lists And Trees

• Linear lists are useful for serially ordered data.
 - \((e_0, e_1, e_2, \ldots, e_{n-1})\)
 - Days of week.
 - Months in a year.
 - Students in this class.

• Trees are useful for hierarchically ordered data.
 - Employees of a corporation.
 - President, vice presidents, managers, and so on.
The element at the top of the hierarchy is the \textit{root}.

Elements next in the hierarchy are the \textit{children} of the root.

Elements next in the hierarchy are the \textit{grandchildren} of the root, and so on.

Elements that have no children are \textit{leaves}.
Example Tree

President

VP1
VP2
VP3

Manager1
Manager2
Manager

Worker Bee

root
children of root
grand children of root
great grand child of root
Definition

- A tree t is a finite nonempty set of elements.
- One of these elements is called the root.
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.
Parent, Grandparent, Siblings, Ancestors, Descendants

- President
 - VP1
 - Manager1
 - Manager2
 - VP2
 - VP3
 - Manager
 - Worker Bee
Caution

- Some texts start level numbers at 0 rather than at 1.
- Root is at level 0.
- Its children are at level 1.
- The grand children of the root are at level 2.
- And so on.
- We shall number levels with the root at level 1.
height = depth = number of levels
Node Degree = Number Of Children
Tree Degree = Max Node Degree Degree of tree = 3.
Binary Tree

- Finite (possibly empty) collection of elements.
- A **nonempty** binary tree has a **root** element.
- The remaining elements (if any) are partitioned into **two** binary trees.
- These are called the **left** and **right** subtrees of the binary tree.
Differences Between A Tree & A Binary Tree

• No node in a binary tree may have a degree more than 2, whereas there is no limit on the degree of a node in a tree.

• A binary tree may be empty; a tree cannot be empty.
Differences Between A Tree & A Binary Tree

• The subtrees of a binary tree are ordered; those of a tree are not ordered.

![Diagram showing the difference between a binary tree and a tree]

• Are different when viewed as binary trees.
• Are the same when viewed as trees.
Arithmetic Expressions

- \((a + b) \times (c + d) + e - \frac{f}{g} \times h + 3.25\)
- Expressions comprise three kinds of entities.
 - Operators (+, -, /, *).
 - Operands (a, b, c, d, e, f, g, h, 3.25, \((a + b), (c + d)\), etc.).
 - Delimiters ((),).
Operator Degree

- Number of operands that the operator requires.
- Binary operator requires two operands.
 - $a + b$
 - c / d
 - $e - f$
- Unary operator requires one operand.
 - $+ g$
 - $- h$
Infix Form

• Normal way to write an expression.
• Binary operators come in between their left and right operands.
 ▪ a * b
 ▪ a + b * c
 ▪ a * b / c
 ▪ (a + b) * (c + d) + e – f/g*h + 3.25
Operator Priorities

• How do you figure out the operands of an operator?
 ▪ $a + b \times c$
 ▪ $a \times b + c / d$

• This is done by assigning operator priorities.
 ▪ $\text{priority}(\times) = \text{priority}(/) > \text{priority}(+) = \text{priority}(-)$

• When an operand lies between two operators, the operand associates with the operator that has higher priority.
Tie Breaker

- When an operand lies between two operators that have the same priority, the operand associates with the operator on the left.
 - $a + b - c$
 - $a * b / c / d$
Delimiters

- Subexpression within delimiters is treated as a single operand, independent from the remainder of the expression.
 - \((a + b) \times (c - d) / (e - f)\)
Infix Expression Is Hard To Parse

- Need operator priorities, tie breaker, and delimiters.
- This makes computer evaluation more difficult than is necessary.
- Postfix and prefix expression forms do not rely on operator priorities, a tie breaker, or delimiters.
- So it is easier for a computer to evaluate expressions that are in these forms.
Postfix Form

• The postfix form of a variable or constant is the same as its infix form.
 ▪ a, b, 3.25

• The relative order of operands is the same in infix and postfix forms.

• Operators come immediately after the postfix form of their operands.
 ▪ Infix = a + b
 ▪ Postfix = ab+
Postfix Examples

• Infix = $a + b \times c$
 - Postfix = $a \ b \ c \ * \ +$

• Infix = $a \times b + c$
 - Postfix = $a \ b \ * \ c \ +$

• Infix = $(a + b) \times (c - d) / (e + f)$
 - Postfix = $a \ b \ + \ c \ d \ - \ * \ e \ f \ + \ /$
Unary Operators

• Replace with new symbols.
 ▪ + a => a @
 ▪ + a + b => a @ b +
 ▪ - a => a ?
 ▪ - a-b => a ? b -
Postfix Evaluation

- Scan postfix expression from left to right pushing operands on to a stack.
- When an operator is encountered, pop as many operands as this operator needs; evaluate the operator; push the result on to the stack.
- This works because, in postfix, operators come immediately after their operands.
Postfix Evaluation

- \((a + b) \times (c - d) / (e + f)\)
- \(a b + c d - * e f + /\)
- \(a b + c d - * e f + /\)
- \(a b + c d - * e f + /\)
- \(a b + c d - * e f + /\)

stack

b

a

stack
Postfix Evaluation

- \((a + b) \times (c - d) / (e + f)\)
- \(a \ b + c \ d - * \ e \ f + /\)
- \(a \ b + c \ d - * \ e \ f + /\)
- \(a \ b + c \ d - * \ e \ f + /\)
- \(a \ b + c \ d - * \ e \ f + /\)
- \(a \ b + c \ d - * \ e \ f + /\)
- \(a \ b + c \ d - * \ e \ f + /\)
- \(a \ b + c \ d - * \ e \ f + /\)

Stack:

- \(d\)
- \(c\)
- \((a + b)\)
Postfix Evaluation

- \((a + b) \times (c - d) \div (e + f)\)
- \(a \ b + c \ d - \times e \ f + /\)
- \(a \ b + c \ d - \times e \ f + /\)

\((c - d)\)
\((a + b)\)

stack
Postfix Evaluation

• \((a + b) * (c - d) / (e + f)\)
• \(a b + c d - * e f + /\)
• \(a b + c d - * e f + /\)
• \(a b + c d - * e f + /\)
• \(a b + c d - * e f + /\)
• \(a b + c d - * e f + /\)

\(f\)
\(e\)
\((a + b) * (c - d)\)

stack
Postfix Evaluation

- \((a + b) \times (c - d) / (e + f)\)
- \(a b + c d - * e f + /\)
- \(a b + c d - * e f + /\)
- \(a b + c d - * e f + /\)
- \(a b + c d - * e f + /\)
- \(a b + c d - * e f + /\)
- \(a b + c d - * e f + /\)

stack

\((e + f)\)

\((a + b) \times (c - d)\)
Prefix Form

• The prefix form of a variable or constant is the same as its infix form.
 ▪ a, b, 3.25
• The relative order of operands is the same in infix and prefix forms.
• Operators come immediately before the prefix form of their operands.
 ▪ Infix = a + b
 ▪ Postfix = ab+
 ▪ Prefix = +ab
Binary Tree Form

- $a + b$
- $-a$

Diagram:

```
+  
/  
a  b
```

```
-  
/  
-  
/  
a  
```
Binary Tree Form

• \((a + b) \times (c - d) / (e + f)\)
Merits Of Binary Tree Form

- Left and right operands are easy to visualize.
- Code optimization algorithms work with the binary tree form of an expression.
- Simple recursive evaluation of expression.