PC-TRIO: A Power Efficient TCAM Architecture
for Packet Classifiers

Tania Banerjee and Sartaj Sahni,
Department of Computer and Information Science and Engingeri
University of Florida, Gainesville, FL 32611
{tmishra, sahnrji@cise.ufl.edu
Gunasekaran Seetharaman, AFRL, Rome, NY, USA
Gunasekaran.Seetharaman@rl.af.mil

Abstract—PC-TRIO is an indexed TCAM architecture for TCAMs are used widely for packet classification. The
packet classification. In addition to index TCAMs, PC-TRIO popularity of TCAMSs is mainly due to their high-speed table
uses wide SRAM words. On our packet classifier datasets, PC-|q4yn mechanism in which all the TCAM entries are searched
TRIO reduced TCAM power by 96% and lookup time by . .

98% on an average, compared to PC-DUOS+ [28] that does in parallel. Each bit of a TCAM may be set to one of th_e
not use indexing or wide SRAMs. PC-DUOS+ was shown to three states 0, 1, and '?" (don't care). A TCAM is used in
be better than STCAM, which is a single TCAM architecture conjunction with an SRAM. Given a ruléF, A), the filter

conventionally used for packet classification [28]. In this paper, @ £ of a packet classifier rule is stored in a TCAM word and

also extend PC-DUOS+ by augmenting it with wide SRAMs and ; ; ; ;
index TCAMs using the same methodology as used in PC-TRIO. action A is stored in an associated SRAM word. All TCAM

to obtain PC-DUOS+W. On ACL datasets PC-DUOS+W reduced €ntries are searched in parallel and the first match is used to
TCAM power by 86% and lookup time by 98%, compared to access the corresponding SRAM word to retrieve the action.

PC-DUOS+, which demonstrates the effectiveness of indexingdn So, when the packet classifier rules are stored in a TCAM in
usage of wide SRAMs in reducing power and lookup time for decreasing order of priority (increasing order of cost),aae

packet classifiers. determine the action corresponding to the matching rulaef t
Index Terms—Packet classifier, incremental updates, power, highest priority, in one TCAM cycle. The main limitation of
TCAM. TCAMs is that these memories are power hungry. In fact at

the same access rate, a TCAM may consume 30 times more
power than an SRAM used for a software based classification
[19]. The more the number of entries in the TCAM, the

Packet classification is a key step in routers for variodgher the power needed to perform a search. This problem is
functions such as routing, creating firewalls, load balagci worsened for packet classifiers since typically a classifir
and differentiated services. Internet packets are clagsifito includes port range fields that need multiple TCAM entries
different flows based on packet header fields and using a tabgf rule for representation in the TCAM. This is called range
of rules in which each rule is of the forfF, A), whereF is expansion. Given that the source and destination port ntsnbe
a filter andA is an action. When an incoming packet matche¥€ represented in 16 bits, the number of TCAM entries needed
a rule in the classifier, its action determines how the packetrepresent a port range in the worst case is 30 corresppndin
is handled. For example, the packet could be forwarded to #nthe rangg1,2'® —2]. Thus, a filter having both source and
appropriate output link, or it may be droppeddAlimensional destination port ranges set {b,2' — 2] undergoes a worst
filter F is a d- tuple (F[1],F[2],---,F[d]), where F[i] is case expansion af0 x 30 = 900 TCAM entries.
a range specified for an attribute in the packet header, such
as destination address, source address, port numbercproto TCAMs are augmented with wide SRAMs and index
type, TCP flag, etc. A packet matches filter if its attribute TCAMs for scalability and low power consumption. These
values fall in the ranges df[1],--- , F[d]. Since it is possible techniques are simple and have produced significant benefits
for a packet to match more than one of the filters in a classifiér packet forwarding. We extend the applicability of these
thereby resulting in a tie, each rule has an associated cost&shniques to packet classification, in this paper. Padkst c
priority. When a packet matches two or more filters, the actigification is a harder problem than packet forwarding begaus
of the matching rule with the lowest cost (highest priority) €ach rule in a classifier typically consists of five fields, eym
applied on the packet. It is assumed that filters that mateh tource, destination, protocol, source port and destingtat,
same packet have different priorities. and a corresponding action. In contrast, a rule in a packet

forwarding table consists of only one field, that is destorat

This material is based upon work funded by AFRL, under AFRL Corprefix, and a corresponding next hop. The difficulties in gsin
tract No. FA8750-10-1-0236. (b) Any opinions, findings arehdusions or g jndexed TCAM architecture in packet classification are
recommendations expressed in this material are those of tterésjt and . .

discussed below. We also discuss ways to overcome these

do not necessarily reflect the views of AFRL. Approved for lpubelease: > > ')
(88ABW-2011-4143) difficulties and contributions of PC-TRIO.

I. INTRODUCTION

A. Problems in storing a classifier in an indexed TCAM packet is matched by both the rules. Independent rules may

There are two problems in mapping a packet classifier B Placed anywhere in the TCAM since a lookup matches
an indexed TCAM architecture. The first problem is that th@ly one rule and priority resolution is not needed. So a
overlapping of rules may lead a higher priority rule to beeto TCAM storing only mdependent rules does not need a pr|or_|ty
in a bucket of entries corresponding to a lower priority xde encoder. Further, covering rules are not needed. Thush give

This is more likely to happen when we have TCAM bucketd Set of independent rules, we can easily identify the inslexe
of fixed sizes. without messing up the priority ordering. This helps us in

The second problem is the need to include:aering @dding wide SRAMs as well as index TCAMs and we present

rule in each TCAM bucket which introduces redundancy. AC-TRIO which is an indexed TCAM architecture for packet
covering pre fiz [2], [3], in the context of packet forwarding classification. To the best of our knowledge, PC-TRIO is the

tables, is a default prefix for a TCAM bucket. The presence Bfst indexed TCAM architecture for packet classification.
covering prefixes in a TCAM bucket makes every search in the
TCAM bucket return at least one match. In a packet classifietr, Contribution

covering rules similarly guarantee that a search on a TCAM The main contributions in this work are as follows. Firstly,

We now have a low power TCAM architecture for packet

so introduced, in the face of range expansion, could lead t%ssification. In fact, power consumption in PC-TRIO is up

a huge increase in the number of rules to be stored in the N
TCAM. The following example illustrates these points. 0"1/30 th of the power consumed by an STCAM which is a

conventional TCAM with port range expansion. The reduction

Example: Consider the classifier with 4 rules in Figure 1,. L . -
in power consumption is possible because of selectively act

where each rule has two fields - a destination, and a sourc\;eating only a portion of the TCAM during lookup. Further
The classifier is mapped to the indexed TCAM in Figure 2. Tr\}\‘ﬁth the use of wide SRAMs, we are able to reduce the

port range expansion problem. The start and end points of a

Fil Acti Priori . . .

= Destinatilot?rSource ction - Priority port are now stored in the SRAM whenever possible. During
R1 00* 1000 Al 1 lookup, the content of the wide SRAM word is processed

" by a specialized and fast hardware. Secondly, PC-TRIO has
Rz © 0101 A2 2 .)

faster lookup times and hence higher throughput. PC-TRIO

R3| ooo* 01* A3 3 . .
RA| " Al 4 completes a lookup in at least 1/4th the time taken by PC-

DUOS+ [28], and PC-DUOSH+ itself takes about half the time
Fig. 1. An example classifier taken by a search in a STCAM. Thirdly, PC-TRIO is highly
scalable. With the rapid growth of the Internet, one may ekpe
more and more filter rules to be added to packet classifiers. PC

R1 00* 1000 Al TRIO, with its use of wide SRAMs can store a larger number
/ R3 000* | 01* A3 of classifier rules in a given TCAM, and has a low growth
00* R4+ * A4 index. Finally, PC-TRIO makes it possible to implement fast
* — | R2 0* 0101 A2 and incremental TCAM updates. In fact, for a given insert or
R4« * A4 delete rule request, PC-TRIO takes two TCAM writes on an

Index TCAM average to update the TCAM.
Data TCAM Data SRAM The rest of the paper is organized as follows. Section Il

presents background and related work in this area. Sedtion |
Fig. 2. Classifier rules stored in a indexed TCAM describes the PC-TRIO architecture and associated digusit

and Section IV presents experimental results. We conclade i
data TCAM has two buckets and in this setup, the index TCAdAction V.
uses bits from the destination prefix of each rule to index int
the buckets of the data TCAM. Assuming that addresses are I
4 bhits, suppose a packet arrives with destination and source _ _ o
addresses as 0000 and 0101 respectively. The best matchin/® Pegin with a description of the related work. Sec-
rule from Figure 2 is R3 - the second rule on the first bucket §PN II-A presents the research on TCAM based packet clas-
the data TCAM and A3 is returned as the action to be appliétfiers- Section II-B describes the existing indexed TCAM
on the packet. However, from the table in Figure 1, R2 is tﬁaéchltecture's for'pac.ket forwarding tablgs. We discuss the
best matching rule and A2 is the desired action. challgpge; in using 'mdexed TCAM architecture for packet

Rule R4 in Figure 1 is a covering rule and hence entered glassification in Section I-A. Section I-B shows how these

both the TCAM buckets in Figure 2. A packet classifier m&hallenges can be tackled.
have several covering rules for a TCAM bucket.

. BACKGROUND AND RELATED WORK

A. Packet Classifiers

B. Overcoming these problems The work on packet classifiers in TCAMs, targets three
If we have a set of independent rules, then both the problemsin problems: port range expansion, power consumption and
described above are solved. Two rules @aréependent iff no updates. The first two problems are inter-related as reducin

port range expansion also reduces the power consumptidantifying the first stage indexes, that does not resttiet t
in a TCAM. Various approaches have been proposed in thember of dimensions, as SmartPC does to two. Moreover,
literature to alleviate the range expansion problem. A commthe incremental update strategy of SmartPC results in new
goal in these approaches is to store a classifier rule in desingiles being added to the general TCAM for most of the time.
TCAM entry. The schemes in [1], [6], [7], [9], [14], [17] This increases the number of general TCAM blocks and hence
encode the ranges and store modified rules in the TCAMegrades the power benefits over time since the generalsblock
As a packet arrives, an encoded search key is created frare always activated on lookup.
the packet header fields using the encoding algorithm and thd=ast updates for packet classifiers is gradually becoming
TCAM is searched using the encoded search key. Spitznageportant, and there have been a number of approaches to
et al. [11] proposed enhancements to the TCAM hardwairaplement fast incremental updates. Song and Turner [8]
to include range comparison. With such an enhanced TCAdéscribe an algorithm for fast updates in which an explicit
circuit, each rule occupies a single entry in the TCAMpriority value (which we call block number in this paper) is
PC-TRIO, with the aid of wide SRAMs, can store multiplecalculated for each rule based on the rule’'s implicit ptyori
classifier rules in a single TCAM entry. The common bits imhich is derived from the position of the rule in the classjfie
these rules are stored in the TCAM entry, while the remainirgnd the implicit priority values of the overlapping rulesherl
bits in each rule, including the source and destinationspare computed block number is stored along with the rule in the
stored in the corresponding wide SRAM entry. Thus, PC-TRIDCAM using unused TCAM bits. A new rule may be placed
obtains considerable savings of TCAM power. Additionallyanywhere in the TCAM. This relieves the TCAM of moving
since TCAM lookup time is proportional to the number ogxisting rules to maintain priority ordering. Instead, idgr
TCAM entries, PC-TRIO supports faster lookups. lookup, multiple lookups per packet are performed to idgnti
Liu et al. [13], approach the range expansion problethe best matching rule.
by splitting a d-dimensional classifier into multiple lower Mishra, Sahni and Seetharaman in PC-DUOS [24] and
dimensional classifiers each of which can be stored in its oWdC-DUOS+ [28] use dual TCAMs for representation and
small TCAM, leading to effective reduction of the range exincremental update of classifiers. PC-DUOS+ improves Ipoku
pansion problem. The algorithm effectively contains thegean performance too, although power consumption is the same as
expansion problem, reduces power, improves the lookup tirBEFCAM storing the classifier rules after a direct expansion
and supports batch updates. The power reduction achieveadfishe port ranges. PC-TRIO is different from PC-DUOS+ in
between 35.5% and 89.6% and throughput increased betwesims of both TCAM architecture and associated algorithms.
1.34 and 5.89 times compared to TCAMs implementing direPtC-DUOS+ uses two TCAMs whereas PC-TRIO uses five
range expansion, which we call STCAM here. PC-TRIGCAMs and four wide SRAMs. Both PC-DUOS+ and PC-
obtains a power reduction between 56.5% and 96.6% amRIO identify independent classifier rules. However, PC-
throughput increased between 3.92 and 149.92 times cothpaDd&)OS+ uses a directed graph representation for the rules
to PC-DUOS+ [28]. Power consumption in PC-DUOS+ iso identify a single set of independent rules, whereas PC-
comparable to STCAM, but PC-DUOS+ has up to twice tHERIO uses a multi-dimensional trie representation to idgnt
throughput of a STCAM. two sets of independent rules. Overall, compared to PC-
Compressing packet classifiers by removing redundancegOS+, PC-TRIO uses indexing, wide SRAMs and different
is an effective strategy to reduce TCAM power consumptioalgorithms and data structures to find independent ruleghwh
The approaches in [4], [10], [12], [15], [16], [21] presenturther improves lookup performance and significantly
algorithms that transform an input classifier to an equivaleTCAM power consumption.
smaller classifier. These algorithms quite naturally cionpart
range expansions. The equivalently smaller classifier @an b i o
stored in PC-TRIO to obtain further savings in power and Forwarding tables with indexed TCAMs
lookup time. While the compression techniques bring aboutThe concept of using an index TCAM for a forwarding
reductions in classifier size, they are generally not slétidr table was proposed by Zane et al. [2] and further refined by
incremental updates, since a rule to be deleted, for instancu and Sahni in [3]. A forwarding table can be viewed as a
may not be present in the transformed classifier. one dimensional packet classifier, containing only destina
Ma and Banerjee introduced index TCAMs to store a prgrefixes. Zane et al. [2] proposed a 2-level TCAM architeztur
classifier in SmartPC [20]. The pre-classifier in SmartPC i8 which the first level TCAM is an index to the partitions
the index that classifies each incoming packet based on timothe second level TCAM. We refer to a partition in a
header fields (source and destination) only, at the firsestag TCAM as abucket. The partitions and indexes are constructed
major problem with the pre-classifier construction heigigt by carving the binary trie representing the prefixes in the
the assumption that each classifier rule occupies one TCANMwarding table.
entry in a block. This assumption points to the fact that Lu and Sahni in [3], further augment the traditional 1-
SmartPC completely ignores the range expansion problem dexkel TCAM lookup structure as well as the 2-level TCAM
hence is unusable in its current form for packet classificati structure of Zane et al. [2] with wide SRAMs and store the
using TCAMs. If the problem in SmartPC is corrected, it isuffixes of several prefixes in a single wide SRAM word.
still very different than PC-TRIO, since PC-TRIO uses wid&his enables a reduction in both power consumption and total
SRAMSs, and PC-TRIO has a more advanced mechanism TGCAM memory requirement. Mishra and Sahni, in PETCAM

PRIORITY ENCODER

ITCAM ' ISRAM

L=| Logic to .
comparg Action
bloc

= numbers

block numbe|
and action

extract

ILTCAM1 | ILSRAM1 !

extract
bucket number

LTCAML | LSRAML

extract
bucket number

block numbe!
and action
\

extract

ILTCAM2 | ILSRAM2

LTCAM2 | LSRAM2

Index TCAMs Triple TCAMs (ITCAM, LTCAM1, LTCAM2)

Fig. 3. PC-TRIO Architecture

[22] and DUO [23] obtained further reduction in power andules, a multi-dimensional trie is constructed with therseu
TCAM space for packet forwarding, using the indexing angrefix as the first dimension and our heuristic is applied. To
wide SRAM schemes. In particular, DUO [23] is a dual TCAMbbtain the second subset of independent rules, anothei- mult
architecture used for packet forwarding that uses efficiedimensional trie is constructed using the remaining rules,
memory management algorithms for the two TCAMs. Thedane with the destination prefix as the first dimension, arel th
algorithms help DUO in executing consistent incrementakeuristic is applied again. Our partitioning strategy isdzhon
updates [25], [26]. the observation that most of the prefixes are very specific and
do not overlap, irrespective of whether the prefixes reprtese
Il. PC-TRIO source or a destination. In fact, using our strategy, thebaim

. . . of rules in the third subset containing the remaining rules w
PC-TRIO is a comprehensive TCAM based solution for IO\%nly 506 on an average on our te%ts. So, evengthough the

pg\gei; ciogsumpr)]tmrrl ﬁi':d Iarst Ior?(l;up n Fi)atdft ;:Ia?if;:ﬁcatlo maining rules may be used to generate more independent
a cludes an architecture and associated aigortnms. Jio making the number of overlapping rules even smaller,

;FC;AMIarckhltecturg enables pgrallel_rand F'pe.!['r?ed Ec?:e?s ‘ﬁere is no tangible benefit in terms of power and performance
aster lookups and power savings. the aigorithms neIp 10 Yp., \hat is achieved with two independent sets. In factag m

in the various TCAMs in the system to ensure correct resu'%?dversely affect power and performance, as we will soon see.
and also to efficiently update the TCAMs when the classifier '

is updated. The second step in PC-TRIO is to store the three subsets of
Given a classifier, the first step in PC-TRIO is to partitioﬁ“'es in the TCAM. architecture as described in Se.ction I.II—A_
the rule set to eliminate overlap among the rules. In paeiicu Each of the two independent subsets of rules, is stored in
PC-TRIO partitions the rule set into three subsets, out 6éwh its own indexed TCAM and wide SRAM system. The third
two subsets contain non-overlapping or independent ruids #UPset of remaining rules is stored in a regular TCAM-SRAM
the third subset contains the remaining rules. The hearisByStém. and not in an indexed TCAM or wide SRAM, due to
presented in the paper for partitioning the rule set usesthe problems descrl.bed in Sgctlon I-A. Thus the three sabset
multi-dimensional trie to represent classifier rules witte t Of rules are stored in three independent TCAM systems, that
five standard fields, namely, prefixes to source and desimatf"® l0oked up in parallel to search for a match. So, at the

addresses, protocol type, source port and destination Aortfinal stage, the architecture uses a logic circuit to comgzee
multi-dimensional trie is a scalable, space efficient repne priority of the three rules matched from the three subsetts an

tation of the classifier rules [27], [30]. PC-TRIO uses tiies returns the action corresponding to the highest prioritycima
the control plane to fill in the TCAMs initially, and to perfor In this context, we note that having more than two indepen-
subsequent updates. To generate the first subset of indapiendent sets will incur higher hardware cost since indexed TCAM

wide SRAM systems have to be added for the independdht Storing rules in TCAMs

sets. This will result in higher power consumption and also i en an input of packet classifier rules, various prepreces
decreased performance since the final stage logic to COMPRE stens are applied on the rules before storing the clessifi
priorities will become a bottleneck. _ . in PC-TRIO. The first step is to create a priority graph and
) The PC-TRIO archﬂecture IS pre_sented in detail in _Seﬁiulti-dimensional tries for the rules in the classifier. I8

tion lll-A. The algorithms for storing the TCAMS uSing ¢ iher discussed in Section I11-B1. In the second and third

gulti.—din:ﬁnBsionrz]a_ll triﬁs ang p_riorit)ll grgr[])hs are SFSCUS:E‘ES steps, the LTCAM1 and LTCAM2 subsystems are populated
ection 1II-B, while the updating algorithms are disCussed . yiscyssed in Sections 11I-B2 and [11-B3, respectivelyeT

Section III-C. The differences of PC-TRIO with related nhult fourth and final step is to store the remaining rules in the

TCAM architectures are presented in Section I1I-D. ITCAM in priority order, which is discussed in Section 1114B

A. The Architecture 1) Representing Classifier Rules:

. . . L a) Priority Graph: The classifier rules are represented in
Figure 3 illustrates the PC-TRIO architecture. It prlrr;zstrlla priority graph, which contains one vertex for each rule in

consists of three TCAMs, the ITCAM (Interior TCAM), t_hethe classifier. There is a directed edge) from vertexu to
LTCAMl (Leaf TCAM) and the LTCAM2. The CorreSpondIngverteXU iff (a) the rules corresponding toandv overlap (i.e.,
associated SRAMs are: ISRAM, LSRAML and LSRAMZp 045t one packet matches both rules) and (b) the pridity o
respectively. The LTCAMs store. mdependent rules, hend;le b‘?s more than that ob (we assume that overlapping rules have
the TCAMs are augmented with W'de. LSRAMS and Indefﬁifferent priority). For the directed edge,(v), we say that:
TCAMs. The wide LSRAMs store multiple actions and parf, o parent ob andwv is the child ofu. The priority graph is

of rules in a single word. Thus PC'TRI.O neeo_ls ad_d't'on?lsed to assign block numbers to rules/vertices as follows [8
hardware to extract block number (associated with priaity All vertices with in-degree 0 are assigned the block number

rule) and action corresponding to the matching rule(s) froT Each remainina vertex is assianed a bl
. . ock number equal
a returned LSRAM word. The index TCAMs are labeled ning v I 9) au

ILTCAM1 and ILTCAM2 corresponding to LTCAM1 and 1 block b
LTCAM2, respectively. The index TCAMs also have wide +($§L§E{ ock number of u}
associated SRAMs, namely, ILSRAM1 and ILSRAM2. These
wide LSRAM words store bucket indexes to access the né’%r'ereE IS the.set Of. edges in the priority graph.. Thus a child
level TCAMSs, and bits from the indexes themselves. Thus, pg any vertex is assigned a bIock_number that is at least one
TRIO employs additional hardware to extract bucket numb8t°re than .the block number Of this vertex. '

from multiple entries in the wide SRAM word. The bucket Exam_ple._Suppose a classifier has four tv_vonleId rules as
number obtained is used to activate a specific bucket in tﬁ@own in Figure 4. Figure 5 shows the priority graph for
corresponding LTCAM. Since the rules stored in the tV‘..OI d Rule (S Destination) Priorit
LTCAMs and the two ILTCAMs are independent, at most ndex | Rule (ou/rce, es |r/1a lon) Priority
one rule (in each LTCAM and ILTCAM) will match during R1 (0.0.0.0/0, 0.0.0.0/16) 1

a search. So these TCAMs do not need a priority encoder AE:Z3 (1'0'0'0/;3' 1'0'0'0//16) 2
priority encoder assists in resolving multiple TCAM matshe (0.0.0.0/8, 0.0.0.0/8) 3
and is used with the ITCAM to access the ISRAM word_R4 (0.0.0.0/0, 0.0.0.0/0) 4

corresponding to the highest priority matching rule in th&g. 4. A classifier with four rules
ITCAM.

A lookup in PC-TRIO is pipelined with 2 stages, ABC andhis classifier. Consider rules R1 and R4. These two rules
DEF marked in Figure 3. In the first stage, the ILTCAM®verlap with each other and rule R1 is of higher priority
are searched (A), ILSRAMSs are accessed using the address@hpared to rule R4. Thus there is an edge between the
the matching ILTCAM1 and ILTCAM2 entries (B), and thevertices corresponding to rules R1 and R4 and the direction
matching wide ILSRAM words are processed to obtain thef the edge is from rule R1 to R4. On the other hand, there is
corresponding bucket index for LTCAM1 and LTCAM2 (C).no edge between the rules R1 and R2, because the destination
In second stage, the bucket indexes obtained at the first stpgefix fields of these rules are non-overlapping. For example
are used to search the corresponding buckets in the LTCANRZ matches destination addresses with 1 on the first octet,
the ITCAM is also searched (D). Then, the ISRAM and th&hereas R1 matches those with O on the first octet. Thus,
LSRAMs are accessed using the addresses of the matcHing sets of addresses matched by R1 and R2 are disjoint. In
TCAM entries (E). Finally, the contents of the wide LSRAMFigure 5, the block number of each rule is given by the side
words are processed and the best action is chosen from dfighe corresponding vertex inside a square. corresponding
three actions returned by the ISRAM, LSRAM1 and LSRAM2quare.
by comparing the priorities of the corresponding rules (F). b) Multi-dimensional Trie: A trie is a binary tree used
Though the two stage pipeline described above has higherstore prefixes. The left child of a node of a trie represants
latency, it has the same throughput compared to a sin@lend the right child a 1. Figure 6 shows an example of a trie
stage implementation. Such two stage pipeline architesturepresenting five prefixes, where, *’ represents a sequefce
are common in packet forwarding and the associated latericgiling don’t care bits. We need a multi-dimensional trée t
is generally acceptable. represent a classifier rule, with each field being repreddnte

Algorithm: findNode(node) Inputs:
node: a trie node, initially set to the root of a multi-dimemsibtrie.
Output:
a leaves of leaves set of protocol nodes storing classifles.ru
for each child i of node
findNode(node-child[i]);
endfor
if (node is a leaf) // true if node has no left and right child.
if (node contains root of a next-level trie)
Fig. 5. A priority graph findNode(node+trie—root);
else// node belongs to trie for the last field (protocol)
append protocol node to leaves of leaves set
endif
endif

Fig. 9. Selecting protocol nodes for leaves of leaves set

an instance of the problem of finding maximal independent set
in a graph to the problem of finding the maximum number of
independent rules.
To find an independent rule set in acceptable computing
Fig. 6. Trie for example prefix sef' = {000+, 001«,010%,011x,00+}. tiMe, we relax the “largest set” requirement and instead loo
Packet with address 000* is forwarded to next hdjp. for a large set of independent rules using a two step process.
In the first step, we create kaves of leaves sdR4] of
protocol nodes in a multi-dimensional trie using the altijon

a trie. An example of a multi-dimensional classifier is giveth Figure 9.

below. The nodes belonging to the leaves of leaves set in a trie

Example: Consider a two dimensional classifier withare obtained by traversing the multi-dimensional trie frive
five rules described as follows: The corresponding multfoot to the leaves of the source trie and then from these $eave
into their attached destination trie and then from the Isafe

R# | Rule (Source, Destination) Priority the destination trie into the leaves of their attached imuest

R1 (*, 00%) 1 trie for the protocol field. The leaves of leaves set of rules

R2 (*, 01%) 2 corresponding to the multi-dimensional trie of Figure §R3,

R3 (010%, *) 3 R4}. The rule R1 is not in the leaves of leaves set since its

R4 (11%, %) 4 destination trie, branches out of a non-leaf node of thecsour

R5 *. 5 trie. Similarly, R2 is not in the leaves of leaves set. Rule R5
Fig. 7. A classifier with five rules does not even belong to a leaf of the destination trie, and of

course, the destination trie itself branches out of a naf-le
node in the source trie.

Theorem 1:The rules in a leaves of leaves set of a multi
dimensional trie are mutually independent.

Proof: Consider two rules R1 and R2 in the leaves of
leaves set that are overlapping, i.e. not mutually indepehaf
each other. In other words, there are some common addresses
matched by both the rules R1 and R2. Note that, for two rules
to be overlapping, all the fields in the rule must be overlagpi
as well [26].

Now, consider the outermost trie. The prefixes for the
corresponding field in R1 and R2 trace up to leaf level of
Fig. 8. Multi-dimensional trie, with source as the outermoigt t this trie, since R1 and R2 belong to the leaves of leaves set.

There are two possibilities, either the leaf in the outetmos
dimensional trie is illustrated in Figure 8. In this Figuréhe trie traced by R1 is the same, or different than that traced by
outermost trie (whose nodes are colored blue) represems tR2. If it is different, then the corresponding prefix fielde ar
source prefixes of the rules, while the next level tries gmé non-overlapping, and hence R1 and R2 are non-overlapping.
the destination prefixes. The branching out of a next level tBut this is in contradiction with our selection for R1 and R2.
from a node is represented by arrows in the figure. The neSb, both the rules branch out of the same leaf of the outermost
level trie nodes that represent the rules are marked with R#rie.

c) Leaves of leaves seOne of the very first challenges This logic may, similarly, be applied to the next level trie
in designing PC-TRIO is identifying the maximum number o&nd to all the other tries in sequence in the multi-dimeradion
rules that are pairwise independent in a classifier. Thisis &ie. Then we get that all the fields of R1 and R2 are the same
NP-complete problem which can be easily proved by reduciagd so R1 and R2 cannot be different rules. In other words,

R1=R2. B and protocol of a classifier rule used for this purpose. The
The second step in finding a set of independent rulesfiglds appear in the following order in the triecdestination,
needed for a packet classifier with source and destinatian psource, protocat. We assume that the destination and source
ranges. The leaves of leaves set built so far, has independeids as well as the protocol field of the filters are specified
entries. However, it is possible that for each entry in thas prefixes. So, these are represented in a trie in the sthndar
leaves of leaves set, there are more than one rule with they with the left child of a node representing a 0 and the
same source/destination/protocol prefixes, but diffesentrce right child a 1. A classifier rule, along with its source and
and destination port ranges. Therefore, in this second, stépstination port ranges, is stored on the protocol nodeishat
we process each leaves of leaves set, and identify a setaugived at after traversing the trie starting from its rasing
independent rules. This is done, by building a small pnoritfirst the destination, then the source and finally the prdtoco
graph with rules only in the leaves of leaves set. fields of the rule. The nodes belonging to the leaves of leaves
It is easy to check that vertices in the priority graph witlset in Triel are obtained by traversing the multi-dimenaion
in-degree 0 comprise a set of independent rules. If thedrée from the root to the leaves of the destination trie arehth
were any two rules that overlap, the corresponding vertickom these leaves into their attached source trie and tfoen fr
will have an edge between them. In that case, one of ttie leaves of the source trie into the leaves of their atthche
vertices will not satisfy the condition of in-degree = 0. Ehu innermost trie for the protocol field.
vertices in the priority graph with in-degree 0 comprise & se We identify a set of independent rules from Triel using the
of independent rules. The vertices corresponding to rutes Rvo step process that includes identifying the leaves ofdsa
and R2 in Figure 5 have in-degree 0. set and building a priority graph. All the remaining ruleg ar
d) Exploiting characteristics of a classifierA set of used to create another multi-dimensional trie, Trie2, inclvh
classifier rules mainly consist of four classes of rules, elgm fields in a filter rule appear in the ordersource, destination,
those with more specific source address prefixes, those witigtocot>. Thus all rules are represented in Triel, and only
more specific destination address prefixes, those with mdh@se rules that are not in the leaves of leaves set for Triel
specific source and destination address prefixes, and thageincluded in the construction of Trie2. Note that the seur
with both the prefixes as non-specific. A prefix is mor@nd destination tries are switched in Trie2, with respect to
specific when the prefix is long and hence includes a smaliel. So, while destination trie is the outermost trie imeTy
set of addresses. An example of a very specific prefix i§, Trie2, source is the outermost trie. The Triel and Trie2
156.122.78.226/30, which is an IPv4 prefix of length 30, arf@r the rules of Figure 7 are given in Figures 11 and 12
includes only 4 addresses. In contrast, a non-specific prefix
includes a large set of addresses. An extreme non-specific
prefix is **. This observation helps us in identifying twotse
of independent rules. The first set is obtained by constrgcti
a multi-dimensional trie with the destination prefix as the
outermost trie, while the second set is obtained by contstigic
another trie where source prefixes constitute the outertmest

Fig. 11. Triel for classifier rules in Figure 7

Fig. 10. Multi-dimensional trie, with destination as the eutost trie

Example: Figure 10 represents a version of the multi-
dimensional trie of Figure 8 in which the outermost trie is
the destination trie. The leaves of leaves set in this trie is
{R1, R3. Note that the union of the leaves of leaves set, fafy 12, Trie2 for classifier rules in Figure 7.
the multi-dimensional tries of Figures 10 and 8,{R1, R2,

R3, R4, which covers all the rules except R5. respectively. Note that the rules R1 and R2 are not included

Thus, we construct two multi-dimensional tries for PCin Trie2. The rules in Triel and Trie2 are stored in LTCAM1
TRIO. A multi-dimensional trie, Triel, is first created inigh and LTCAM2 respectively.
each dimension represents one field of a rule. InitiallyeTri 2) Storing rules in the LTCAM1So far, we have identified
is three-dimensional, with the three fields, source, dastin the independent rules to be stored in the LTCAM1. In this

Match start
position

+2. Port | D. Port S. Port |D. Port

4N 9
Count |len (S1) len (S2)...|len (Sk) C1...|CK| Datgl..| DataN S1., $ angel Rangel *{RangeN RangeN

g
PN

Block . S. RangeD. Rang
Number]Actionl) Tyne1 = Typel

D

Fig. 13. Data encoding in a wide SRAM word

section we describe how these rules are stored in the LTCANtL store the rules in Triel. The Triel is carved using the
subsystem which comprises the LTCAM1 and LSRAM1, ancharving heuristicvisit_postorder of DUO [23] that has been
the corresponding index structure ILTCAM1 and ILSRAM1enhanced for multi-dimensional tries. The heuristic trage
The method is identical for the LTCAM2 subsystem. Théhe trie in post order manner, and whenever a subtrie is found
process of storing rules in the LTCAM1 subsystem is desdribéhat requires SRAM bits less than or equal to the size of an
in five subsections below. First, the format of storing infier SRAM word, that subtrie is a potential candidate for carving
tion in a wide LSRAM word is discussed (Section IlI-B2a);The carving happens if it creates an independent (disjoint)
then we describe the creation of LTCAM1 entries using thentry for LTCAM1. The path starting from the root of Triel
process of carving (Section 111-B2b). Next we describe iphrt
port range expansion (Section IlI-B2c) that may be necgssar
and finally, the creation of ILTCAM1 and ILSRAM1 entries
(Section IlI-B2d).
a) Wide SRAM Word FormaiOnce the rules to be stored
in LTCAM1 are identified, subtries of the multi-dimensional
trie are carved and rules in the protocol nodes in a subtee ar %gg
stored in a LSRAM1 word. In particular, for each rule in a
protocol node we store the rule’s source and destinatioh peg 14, Nodes in a source trie is being carved.
ranges, block number, and action. We also store the suffix of
a protocol node, which is the path from the root of the carved the root of the subtrie defines an LTCAM1 entry.
subtrie to the protocol node. Figure 13 shows a format for Example Figure 14 shows a portion of a source trie that
encoding this information in a wide SRAM word. The fieldhangs off a destination trie, where carving takes place afaso
in this format are described briefly as follows: 00, 01, and 11 of the source trie. The path from the root to
1) Match start position This field specifies the positions ofthe node of the destination trie from which the source trie
the first bit in the source, destination and protocol fields défangs off is 1101. Thus, after carving the node at 00 on the

from destination trie
with prefix 1101

LTCAM Entries

nodes in the SRAM word must be matched. addresses and protocol fields are represented using 4 bits.ea
2) Count This is the number of protocol nodes in the leaveSimilarly, the two other LTCAML1 entries in this example are

of leaves set stored in the SRAM word. 1101 01?? ???? and 1101 11?? ???7?. Figure 14 also shows
3) len(Siy This field specifies the length of the suffix fora size assignment (in bits) on the three nodes where carving

protocol nodei in the SRAM word. takes place. These sizes are computed for all the trie nodes
4) Ci: This gives the number of classifier rules stored foeven before the carving algorithm is invoked. The size assig

protocol node;. to a trie node represents the number of LSRAML bits needed to
5) Data;: Datay,--- , Datay give details of theN rules store all the classifier rules (for LTCAML1) in a subtrie rodte

in the carved subtrie. The rules for protocol node 1 ¢t that node. For example, for a subtrie rooted at the source
this subtrie come first, followed by those of the secondode 01, the number of bits needed to store the action, block
protocol node and so oata; gives the block number, number, port ranges of classifier rules and suffixes of paitoc
action, source and destination port range types forjthe nodes present in this subtrie, is 450. If the actual width of

classifier rule. a SRAM word is, say, 500 bits, then the rules in this subtrie
6) Si: This field stores the suffix for protocol node will fit in an SRAM word and we may carve at the source
7) Port ranges Stores the port ranges for th€é rules. node 01. A corresponding LSRAML1 entry is constructed for

There are three types of ranges found in a classifier. Thdbg classifier rules in the format given by Figure 13.
are: a whole range ([0-65535]), a range with the same startlhe carving heuristic carves a nodeon the trie when any
and end point, and a range with different start and end poin@$ the following two conditions is true. Herg, is the parent
The port range type subfield in the Data field represents théder in the trie.
three types of ranges using two bits. To save space in a SRAMC1) The size assigned to is less than the width of a
word, a whole range is never entered and only one port number SRAM word, but that assigned ois more than the
is entered for a range with the same start and end points. the width of a SRAM word.

b) Creating LTCAM1 entriesA trie is carved into sub- C2) A descendant gf was carved.
tries to assign rules to the wide SRAM words. Before carvinghe second condition ensures that the carving createsrdisjo
takes place, we calculate the number of SRAM bits need@@€AM entries [23].

c¢) Partial port range expansion: It is possible that the 3) Storing rules in LTCAM2:This is done exactly as for
SRAM bits needed to store the classifier rules for LTCAMLTCAML1, by processing the rules stored in Trie2. In partcul
on a protocol node exceeds the capacity of a wide SRAMie2 undergoes carving in a similar manner as described for
word. This case is shown in Figure 15(a) where the bladkiel and the LTCAM2 system is populated. The remaining
node is a protocol node in the leaves of leaves set and the sizles, i.e. rules that are stored neither in the LTCAML1 nor in
assigned to it is 600 bits. Suppose the width of the SRAMe LTCAM2 subsystem, are stored in the ITCAM.
word is 500 bits. Then to avoid overflowing an SRAM word, 4) Storing rules in the ITCAMThe ITCAM does not have
we must split the rules in the protocol node, into two or mora wide ISRAM, hence, a rule to be entered in the ITCAM,
SRAM words. Instead of replicating the LTCAM1 entry formust have its port range stored in the ITCAM itself. An
each of the split SRAM words, we create a source port ranf#®RAM word contains the action and block number of a
trie as shown in Figure 15(b), and carve nodes on this trie ¢@assifier rule stored in the corresponding ITCAM entry. We
use DIRPE to encode these port ranges on the ITCAM. DIRPE
is suitable for incremental updates, unlike database dkgren
range encoding schemes. However, if fast incremental epdat
are not needed, then any range encoding scheme may be
chosen for the ITCAM.

600 bits
®
600 bits 400 bits 200 bit: C. Incremental Updates

(a) a proto- (b) a new source port trie is

col node attached to the protocol node Insert or delete request
Fig. 15. Prefixes in forwarding table before and after apgyupdates "

[Update priority graph } %

create independent LTCAML1 entries. Each node in the source =,
port trie inherits those classifier rules (for LTCAM1) frotmet i §
protocol node that have their source port range overlap with [Update Triel and if needed Tﬂie2 2
the port range represented by the trie node. Thus multiple =
copies of a rule may be created, one for each trie node with l é
port range overlapping the source port range of the ruleerAft ‘ Shange Trie carving if needed - mse+
the source port trie is created, the carving heuristic resum erge two nodes in case of a delete "
its traversal along the source port trie, and carves souwde p £
nodes if they satisfy either condition C1, or C2. In the exkmp — 8
of Figure 15(b), two LTCAM1 entries are created, one each [Update TCAMs } g
for the two carved nodes. These LTCAM1 entries differ on =
the first bit on the source port field, with one entry having §

a 0 while the other having a 1. If the classifier rules in a

leaf node of the source port trie overflows an SRAM wordkig. 16. Flow for incremental updates

then a destination port trie is created for the destinatiort p

ranges on rules of that leaf node, and the carving heuristicFigure 16 gives the overall flow of the updates that take

finds appropriate nodes to carve on the destination port trig¢lace when a request to insert or delete a rule is received.
The source and destination port tries are thus created in PASter an update request is issued, the priority graph is tgutia

TRIO only when necessary, and then, to minimize the rangs described in Section 1lI-C1. Then Triel and, if necessary

expansion problem we use multi-bit tries for storing thetpofrie2 are updated as described in Section [1I-C2. As the trie

ranges. The bits used to arrive at a node in the multi-bit tri&e updated, it may be necessary to carve the tries at ditfere

define an LTCAML1 entry. trie nodes. This is discussed in Section IlI-C3. Updating th

d) Creating ILSRAM1 and ILTCAM1 entriegfter carv- TCAMSs is discussed in Section 111-C4.

ing Triel to create suffixes for entering into LSRAM1, we 1) Updating the priority graph:To insert a new rule, the

carve Triel again a second time, to create subtries thaaiconffirst step is to store the rule in the priority graph. A new ggrt

LTCAM1 entries. All LTCAML1 entries in a subtrie are entered is created for the rule. The existing rules that overlap with

in a LTCAM1 bucket. Thus, at the end of this carving step, the are identified and new edges are formed betweeand

LTCAML1 entries are partitioned into buckets. The bits frorthe vertices of overlapping rules, with directions of thegesl

the root of the multi-dimensional trie to a carved node dafinset from the higher to the lower priority rules. Then, a block

an index that points to an LTCAM1 bucket. number is assigned tg which is one more than the maximum
After partitioning the LTCAML1 into buckets, Triel is carvedblock number of the nodes from which has an incoming

a third and final time. This time, a carved subtrie contairedge. If the block number of a child vertex is not more than

indexes to LTCAML1 buckets. Suffixes of these indexes, alotigat assigned teo, the child’s block number is updated so that

with the corresponding LTCAM1 bucket indexes, are storatlis at least one more than the block numberwofif the

in the ILSRAML1, and the bits on path from the root of theule » corresponding to this child vertex is stored in ITCAM,

Triel to a carved node define an ILTCAML1 entry. then,r must be moved to the ITCAM block represented by

10

PC-DUOS [24] | &> | PC-DUOS+[28 => | PC-DUOS+W => PC-TRIO

Fig. 17. Sequence of development of TCAM architectures

PC-DUOS PC-DUOS+ PC-TRIO PC-DUOS+W

1. | Uses single LTCAM | Uses single LTCAM | Uses two LTCAMs Uses two LTCAMs

2. | No wide SRAMs or | No wide SRAMs or | Uses wide SRAMs arjdUses wide SRAM and
index TCAMs index TCAMs index TCAMs index TCAM

3. | LTCAM stores highest. TCAM stores highest. TCAMSs store LTCAM stores highest
priority independent | priority independent | independent rules priority independent
rules rules rules

4. | Aborts ITCAM search Aborts ITCAM search Waits for ITCAM Aborts ITCAM search
when LTCAM search| when LTCAM search| search to finish when LTCAM search
succeeds succeeds succeeds

5. | Independent rules are Independent rules argindependent rules are Independent rules are
filtered leaves of vertices in priority leaves of leaves set | vertices in priority
leaves set in trie graph with indegree=(n trie graph with indegree=0

Fig. 18. Differences among the architectures

its updated block number, and the ISRAM entry fois also below may happen. If there is an ancediasf ¢, such thath
updated with the changed block number. On the other handhés at least one carved descendant and the subtrie rooked at
r is in one of the LTCAMSs, then, we simply changs block needs fewer SRAM bits than the width of a SRAM word to
number in the corresponding LSRAM entry. Updates to bloalepresent the classifier rules, thiers carved. As a result, the
numbers are propagated to all vertices reachable from new rule is stored with some existing rules in a new SRAM
To process a delete request, the vertex corresponding to t@d. Note that the existing rules, have additional suffits bi
rule along with the incident edges is removed from the pjoriin the newly created SRAM word and old LTCAM1 entries
graph. for the existing rules are deleted. If no suklexists, a new
2) Updating the tries: To insert a new rule, the rule isLTCAML1 entry is created by carving at The corresponding
first added to Triel. If the rule is an independent rule in BSRAML1 word contains only the newly added rule.
protocol node in the leaves of leaves set, then it is insertedWhen a rule in an LTCAM1 is deleted, then the rule is
in the LTCAM1. Otherwise, the rule is added to Trie2. If thdirst removed from the LSRAM1 word. If the LSRAM1 word
rule is an independent rule in a protocol node in the leaveslicomes empty, then the corresponding LTCAM1 word is
leaves set for Trie2, then the rule is inserted in the LTCAMZ2leleted. Otherwise, if the contents of the LSRAM1 word can
Otherwise, the rule is inserted in the ITCAM. be merged with another LSRAM1 word then a new LTCAM1
If a new rule is stored in the LTCAML1 or the LTCAM2, entry is created while the LTCAM1 entries for the merged
then some of the existing rules in that TCAM may no longerords are deleted.
be independent. If such a non-independent rule exists in therhe algorithms to merge and split buckets on the LTCAMs
LTCAM1, then that rule is added to the Trie2 and if the rulare similarly based on manipulating the carving in Triel and
can be added to the LTCAM2 it is moved from the LTCAM1Trie2.
to the the LTCAM2. Otherwise, the rule is moved from the 4) Updating the TCAMs:To insert or move a rule in a
LTCAML1 to the ITCAM. Similarly, a new rule added to theTCAM we need a free slot at an appropriate location in the
LTCAM2 may cause some of the existing LTCAM2 rules tdfCAM. This slot can be obtained efficiently using memory
be moved to the ITCAM. management algorithms developed for TCAMs. In particular,
To delete a rule, the rule is deleted from Triel and alghe memory management schemes from PC-DUOS+ [28] may
from Trie2 if it was stored in Trie2. The rule is then deletetbe used. For the ITCAM of PC-TRIO, we implemented the
from the TCAM that stores the rule. DLFS_PLO (Distributed and Linked Free Space with Prefix
3) Updating the trie carvingMWe now discuss the dynamicsLength Ordering) scheme, as its the most efficient scheme
of creation and merging of LSRAM words when a new rulgnown to us for moving free slots to a desired location in a
is added or an existing rule is deleted. Both Triel and TrigBCAM. In the DLFS PLO initial rule placement scheme, free
contain nodes that were carved to create TCAM and SRASMots are kept in the region between two blocks. Additignall
entries. We describe how these entries change for Triel. Tthere may be free slot®ithin a block. So a list of free slots
process is similar for Trie2. When a rule is added to Triel & maintained for each block on the TCAM, with the list being
nodet, if there is an ancestar of ¢, where carving was done empty initially. As rules are deleted from a block, the freed
to create a wide LSRAM1 word, and if there is space in slots are added to the list for that block. Thus, DLPSEO
s to place the action, block number, port ranges of the newquires no moves for most of the time to get or return a free
rule, then, the new rule is placed in If there is no space slot.
in s, then the contents of are split, by carving descendants The memory management scheme for the LTCAM of PC-
of a to create two or more LTCAML1 entries. If, on the otheDUOS+ is relatively simple as all the rules in the LTCAM
hand,t does not have an ancestgrthen one of the two things are independent so a new rule may be inserted anywhere in

11

the TCAM. However, we still need to locate a free slot. Th&P chains. The 12 seed files included in ClassBench contain th
LTCAM memory management algorithm creates a linked liftasic parameters used to generate the classifiers of a specifi
of the free slots. When a free slot is needed, a slot is obtaingge. Each generated rule has the traditional 5-field filter,
from the head of the free slot list. PC-TRIO uses this memonamely, source address, destination address, sourceapgg,r
management algorithm for its LTCAM1 and LTCAM2. destination port range, and protocol. We generated the test
classifiers, by using the seed files and specifying the number
D. Differences among PC-DUOS, PC-DUOS+, PC-DUOS+f TUles in each classifier. o
and PC-TRIO Further, we designed a circuit for processing wide SRAM
.] words using Verilog and synthesized it using Synopsys Desig
Figure 17 illustrates our sequence of development of vatympiler to obtain power, area and gate count estimates. We
ious TCAM architectures for packet classification. We firglseq cACTI [31] and a TCAM power and timing model [18]
developed PC-DUOS[24], which uses two TCAMs for packe} estimate the power consumption and search time for the
classification, which was improved in PC-DUOS+[28] respraMs and the TCAMs respectively. The process technology
sulting is faster lookup times and updates. Both PC-DUQReq in the experiments is 70nm and the voltage is 1.12V. It is
and PC-DUOS+ partition the classifier into two subsets gksymed that the TCAMs are being operated at 360MHz [35].
rules - the first subset consisting of independent rules andrne TCAM and SRAM word sizes used are consistent for
the second subset containing the remaining rules. The tWpthe architectures used in the comparison. The word size |
subsets are stored in two regular TCAMs. Next, PC-DUOS[4 pjts for the TCAMs. For SRAMs we have different word
was extended to PC-DUOS+W by using an index TCAM angzes depending upon the TCAMs they are used with. The
wide SRAM for the independent subset of rules. Followingsram words of all the architectures, as well as the LSRAM
PC-DUOS+W, we developed PC-TRIO, in which the classifi§(qrqs of PC-DUOS+, are 32 bits wide. The LSRAM1 and
is partitioned into three subsets. Figure 18 summarizes tlbgRAMZ words of PC-TRIO and the LSRAM words of PC-
differences among these architectures. DUOS+W are 512 bits, while the ILSRAMs are 144 bits wide.
In addition to architectural and algorithmic differencesm The pucket size for LTCAMs in PC-TRIO and PC-DUOS+W
the other architectures, PC-TRIO does not guarantee teat {) set to 65 TCAM entries. PC-DUOS+ uses DIRPE [1] to
rules in the LTCAMs are of the highest priority among albncode port ranges. The classifier rules stored in the ITCAMs
overlapping rules. Thus, PC-TRIO must wait for an ITCAMy pc-TRIO and PC-DUOS+W also use DIRPE to encode
lookup to complete even if there are matching rules in theyt ranges. Since the TCAM word size is set to 144 bits, we
LTCAMs. Although the rule assignment algorithms for PCxssume that 36 bits are available for encoding each porerang
TRIO may be modified so that the LTCAM rules are thg, 5 rule. With this assumption, we use the strides 223333 as

highest priority among all overlapping rules (and thus dvoipese give us minimum expansion of the rules [1], [24].
having to wait for an ITCAM lookup to complete in cases

when a match is found in an LTCAM), doing so retards thg Datasets

performance of PC-TRIO to the point where it offers little or"

no power and lookup time benefit over PC-DUOS+W. We used three benchmarks derived from ClassBench [5].
The first benchmark consists of large classifiers, eachifieass
containing about 100,000 rules, with one classifier for eafch
the 12 seed files in ClassBench. This benchmark is used to
We compare PC-TRIO, with PC-DUOS+W and PC-DUOS¢ompare the number of TCAM entries, power, lookup per-

[28]. PC-DUOS+ was compared with STCAM (Single TCAM)ormance and space requirements of PC-TRIO, PC-DUOS+W
which is conventionally used for packet classification. sThignd PC-DUOS+ [28].

comparison in [28] showed that PC-DUOS+ is superior t0 The second benchmark consists of medium sized classifiers,
STCAM. Hence we preclude STCAM in our comparisoRyith each classifier containing about 20,000 rules. For @dich
with PC-TRIO. We first give the setup used by us for thghe 12 seed files we generated 10 such datasets. Thus, this
experiments in Section IV-A and then describe our benchsnatenchmark consists of 120 classifiers and is used to analyze
in Section I1V-B. Flna”y we pl’esent our results in SectiorQVY the variance of PC-TRIO performance_

The third set of benchmarks was reused from [28]. There

IV. EXPERIMENTAL RESULTS

A. Setup are 13 datasets here which are used to compare incremental
. . . update performance of PC-TRIO, with PC-DUOS+ [28] and
We programmed the rule assignment, trie carving ar%-DUOS+W
update processing algorithms of PC-TRIO using C++, an '

compared their performance on an x86 Linux box with a 64-] o)
bit, 1.2GHz CPU. Itis difficult to get real life packet clafsis C Results from the first benchmark comprising large classi-
from ISPs, mainly due to security reasons. So, we generaﬂﬁfs

test classifiers using ClassBench [5], which is a well known 1) Number of TCAM entriesUsing wide SRAM words
tool for generating synthetic classifiers and packet traceés store portions of classifier rules, reduces the number of
The classifiers generated using ClassBench closely modlel feCAM entries. Figure 19 gives the results of storing our
life packet classifiers. The three different types of cliess datasets in the three architectures. The first, second amd th
modeled by ClassBench are access control lists, firewatls arolumns show the index, name, and the number of classifier

12

Index | Dataset| #Rules PC-DUOS+ PC-DUOS+W PC-TRIO

Entries | #ITCAM | Watts | Time(ns) || Entries | #ITCAM | Watts | Time(ns) || Entries [#ITCAM | Watts | Time(ns)
1 acll 99309 117033 379 36 2624.39 || 21146 379 0.23 1.50 || 21085 182 0.19 2.00
2 acl2 74298 101857 19421 31 1122.39 || 37491 19421 6.35 33.16 36593 18439 6.04 151.93
3 acl3 99468 131243 30859 40 1640.47 || 52632 30859 9.47 81.19 26823 1017 0.40 2.89
4 acl4 99334 127320 25189 39 1730.46 || 49912 25189 7.98 47.96 34034 6547 2.32 26.11
5 acls 98117 105375 1535 32 2072.16 || 32932 1535 1.29 0.41 34993 2209 0.77 5.68
6 fwl 89356 142085 91473 43 2466.72 [| 98425 91473 | 28,52 | 2318.82 || 26610 4864 1.60 16.71
7 fw2 96055 129249 27084 39 1543.76 || 43146 27084 8.90 86.77 || 22196 1494 0.53 3.63
8 fw3 80885 117731 39199 36 1007.04 || 51228 39199 | 11.99 215.81 [| 26269 7479 2.38 30.69
9 fwé 84056 211403 116149 64 3182.03 || 131505 116149 | 35.46 2139.81 || 27617 4894 1.60 15.86
10 fwb 84013 111989 55650 34 930.94 || 65598 55650 | 17.00 616.09 || 22361 3454 1.15 9.72
11 ipcl 99198 112154 22165 34 1288.02 || 41920 22165 6.82 45.81 23894 567 0.26 2.10
12 ipc2 100000 || 100000 30133 30 784.69 || 47247 30133 9.23 114.37 20195 0 0.09 1.45

Fig. 19. Number of TCAM entries, ITCAM entries and TCAM powerdalookup time in PC-DUOS+, PC-DUOS+W, PC-TRIO

Index | Dataset PC-DUOS+ PC-TRIO Improvement
Power (mW) Lookup Time (ns) Power (mW) Lookup Time (ns) Ratio
Average] Std. Dev. | Average | Std. Dev. || Average] Std. Dev. | Average [Std. Dev. || Power Time
1 acll 5511.72 15.54 228.64 1.31 315.87 11.90 1.53 0.04 17.45 | 149.92
2 acl2 6018.23 46.56 145.75 2.45 434.11 23.18 1.40 0.04 13.86 | 103.90
3 acl3 5819.47 25.88 113.39 1.28 2140.47 45.20 22.60 1.08 2.72 5.02
4 acl4 5651.50 55.68 113.54 3.07 2460.07 80.46 28.95 2.46 2.30 3.92
5 acls 3543.97 116.27 80.37 6.07 1395.74 71.70 9.92 1.33 2.54 8.10
6 fwl 6916.64] 83.74 109.66 3.13 || 350.62 5.29 1.27 0.01 19.73 86.05
7 fw2 6104.80 26.05 147.12 2.47 || 201.82 0.95 1.22 0.00 30.25 | 120.77
8 fw3 5989.51 92.88 93.51 5.44 || 377.30 7.30 1.33 0.01 15.87 70.17
9 fwa 10212.4f 72.43 209.17 2.88 781.97 12.46 2.63 0.07 13.06 79.48
10 fwb 5480.81 37.00 63.46 0.76 42471 7.25 1.43 0.02 12.90 44.45
11 ipcl 5211.18 19.70 108.23 1.19 811.96 8.68 2.58 0.05 6.42 41.89
12 ipc2 4755.23 2.09 61.58 7.29 188.05 0.39 1.22 0.00 25.29 50.63

Fig. 20. Average power and lookup time for PC-DUOS+ and PCaRI

rules, respectively, of a dataset. The fourth, fifth andhsixt (a) Compaction . (b) Power

and seventh columns give for PC-DUOS+, the total numbe g ig“’

of TCAM entries, the number of ITCAM entries, the TCAM &, S 10

power and lookup time, respectively. Similarly, the eighth $ £ | ' I “i IIIiI

ninth, tenth and eleventh columns give the correspondin :1 %100

numbers for PC-DUOS+W and the remaining four column‘ §

give those for PC-TRIO. 01 2345678910112 ¥ T3t 8 o101
Figure 21(a) gives the TCAM compaction ratio of the three Dataset Index | gy oc rri0 Dataset Index

architectures, obtained by dividing the number of TCAM e

entries for each dataset by the number of rules in the clessifi ©) Time o (d) Area

PC-DUOS+ does not use wide SRAMs, hence there is ng

compaction, instead, there is expansion to handle poresang S10° a0

Thus, the compaction ratio for PC-DUOS+ is at least JE ‘ ’I] | dd E

for every dataset. The compaction achieved by PC-TRIO |v10 gzo

more than that of PC-DUOS+W for almost all the datasets.lg

This is because, PC-TRIO has fewer ITCAM entries ant 10 12345678 9101112 0 12345678 9101112
therefore stores more rules in wide SRAM words. For acl5 Dataset Index Dataset Index
PC-DUOS+W identified more independent rules compareu
to PC-TRIO. The algorithm to identify independent rules |§|
the same for PC-DUOS+W and PC-DUOS+ which results |n
identical ITCAM entries for these two architectures.

No classifier rules in the LTCAMs of PC-DUOS+W

and PC-TRIO needed partial port range expansion (S&g|0 is 96% relative to PC-DUOS+, and 65% relative to
tion 11I-B2c). So all LTCAM entries in PC-DUOS+W and PC-DUOS+W. The average improvement in power with PC-
PC-TRIO were at most 72 bits. DUOS+W is 71%, relative to PC-DUOS+. The maximum

2) Power: Figure 19 gives the TCAM power consumptionimprovement with PC-TRIO is observed for ipc2 (99%) and
during a lookup, while Figure 21(b) gives the normalizedltotthe minimum for acl2 (80%), compared to PC-DUQOS+. The
power obtained for each dataset by dividing the total TCAhaximum improvement with PC-DUOS+W is observed for
and SRAM power in an architecture by that of PC-TRI@cl1 (99%) and the minimum for fwl (35%), compared to
during a lookup. The vertical axis is scaled logarithmigallPC-DUOS+. The maximum improvement with PC-TRIO is
and based at 1. PC-TRIO uses less power for all datasebserved for ipc2 (98%) and the minimum for acll (2%),
except acls. The average improvement in power with P€empared to PC-DUOS+W.

21. Comparison of compaction ratio, total power, lookupetand area

13

3) Lookup Performance:Figure 21(c) gives the averageshows improvement in power and lookup time because of
lookup time, normalized with respect to that of PC-TRIOndexing.

TCAM search time is proportional to the number of TCAM The standard deviation for power and lookup time in both
entries. Hence, PC-DUOS+ requires the maximum time. PC-DUOS+ and PC-TRIO is small, which shows that the

PC-DUOS+W is faster than PC-TRIO for the ACL testindividual power and timing numbers are very close to the
acll, acl2 and acl5. For these datasets, the number of ITCAlMerage.
entries in PC-DUOS+W and PC-TRIO (columns 9 and 13 of
Figure 19) are comparable. Thus, the ITCAM search t'mﬁ Results from the third benchmark with small to medium
are comparable, as are the number of lookups served by 08 classifiers
ITCAMs. This, coupled with the fact that ITCAM searches
are slower, give PC-DUOS+W an immediate advantage sincel he classifiers here are being reused from the work on PC-
it, unlike PC-TRIO, aborts an ITCAM search after findinf?UOS+ [28] to check the update performance of PC-TRIO in
a match in the LTCAM. However, for these three tests, tfe@mparison with PC-DUOS+ and PC-DUOS+W.
lookup times using PC-TRIO are quite reasonable (column 151) Update PerformanceFigure 22 shows the average num-
of Figure 19). For the other datasets PC-TRIO has fewer rulegr of TCAM writes used per update. PC-TRIO needs about 2
in the ITCAM, which makes PC-TRIO lookups faster even
though it has to wait for ITCAM search to finish.

The average improvement in lookup time with PC-TRIO
and PC-DUOS+W (relative to PC-DUOS+) are 98% and 76%
respectively. The average improvement in lookup time wit
PC-TRIO (relative to PC-DUOS+W) is 68%. The maximum
improvement using PC-TRIO rather than PC-DUOS+ is ob
served for acll (99.96%) and the minimum for acl2 (86.6%) 12 3 4 5 6 7 8 9 10 11 12 13
The maximum improvement using PC-DUOS+W rather thei.,

PC-DUQOS+ is observed for acll (99.98%) and the minimufig. 22. TCAM writes

for fwl (5%). The maximum improvement with PC-TRIO

rather than PC-DUOS+W is observed for tests fwl, fw4 antCAM writes on an average and is comparable to PC-DUOS+
ipc2 (99%) and the minimum for acl4 (47%). for updates. PC-TRIO hence supports efficient and consisten

4) Space requirementsWe obtained SRAM area from incremental updates. PC-DUOS+W needs more writes than
CACTI results and estimated TCAM area using the sanRC-TRIO to preserve the property that all rules stored in the
technique as used in PETCAM [22], where area of a singld CAM have the highest priority compared to overlapping
cell is multiplied by the number of cells and then adjusteﬂJ|eS-
for wiring overhead. Figure 21(d) gives the total area ndede
for the TCAMs and associated SRAMs. The total area s characteristics of the logic that processes wide SRAM
comparable for the three architectures. PC-TRIO and P 4o
DUOS+W have lower TCAM area (due to fewer TCAM

entries) and higher SRAM area (due to wider SRAM words) A circuit designed to process the contents of a wide LSRAM
than PC-DUOS+. word was synthesized using a 0.A8 library [32], [33] and it

was found found that the design successfully met the timing

constraints with a 500MHz clock. The results are presented
D. Results from the second dataset with medium classifiers

IS

'| I PC-TRIO
[]PC-DUOS+W
[PC-DUOSH+

TCAM writes per update

: . . Process | Time | Throughput | Voltage Power | Gate Count
Figure 20 gives the average TCAM power and lookup times (ns) (Msps) W) (mW)

and their standard deviation for PC-DUOS+ and PC-TRIO51gim | 2 500 18 61.13 | 59724
From the last couple of columns in this figure, we obser\{g . 23. Timing and power results for additional hardware
that power consumption in PC-TRIO is between 1/2.3 andg

1/30 th of the power consumtion in PC-DUOS+. Lookup timg, yhe Figure 23. The throughput is represented in terms of

in PC-TRIO s 3.92 to 149 tlmeg faster compared to that illion searches per second (Msps). An example of a TCAM
PC-DUOS+. The least power saving was for the access confal,, 4 speed of 143MHz (effectively, 143 Msps) is found in
Ii_st test, acl4, While_z t_he most savings were qbtained for tq§4]' using 0.13m technology. It is expected that the delay
firewall test, fw2. Similarly, acl4 has the least improvem®n . erhead and throughput of our design will improve on using
lookup time, whereas acll has the maximum improvement. 0.13:m library. Thus, our design can operate at the same
The performance of PC-DUOS+ or PC-TRIO ultimatelyépeed as that of a TCAM.

depends on how many rules are stored in the ITCAM, since
that's the TCAM that cannot be optimized. For example, PC-
DUOS+ had about 6000 rules in the ITCAM for acl4, whereas V. CONCLUSION

PC-TRIO had more than 9000. This is not surprising since We presented an indexed TCAM architecture, PC-TRIO,
PC-DUOS+ and PC-TRIO use different algorithms to extraébr packet classifiers. The methods to add indexing and wide

independent rules. Despite having a larger ITCAM, PC-TRISRAMs were applied on PC-DUOS+ [28] to obtain another

14

indexed TCAM architecture PC-DUOS+W. These two archji9] O. Rottenstreich and |. Keslassy, Worst-Case TCAM Rule
tectures were then compared with PC-DUOS+. Both PC-TRIO _ Expansion|EEE INFOCOM 2010. _
and PC-DUOS+W may be updated incrementally. The averdgdl Y- Ma and S. Banerjee, A Smart Pre-Classifer to Reduce

improvement in TCAM power and lookup time using PC- E?avgiirfciggilg?gg%],\ﬁo& ';((.)tﬂ\{ls for Multi-dimensional Packet

TRIO were 96% and 98%, respectively, while that using PG21] c. R. Meiners, A. X. Liu, and E. Torng, Topological Transfor-

DUOS+W were 71% and 76%, respectively, relative to PC- mation Approaches to Optimizing TCAM-Based Packet Classi-

DUOS+. fication SystemsSIGMETRICS/Performanc@009.
PC-DUOS+W performed better on the ACL datasets cort2] T- Mishra and S.Sahni, PETCAM — A Power Efficient TCAM

o For Forwarding TabledEEE Transactions on Computergol-

pared to the other types of classifiers. There was 86% reduc- ume 61, No. 1, January 2012, 3-15

PC-DUOS+W on the ACL datasets on an average compared to for Routing Tables with Incremental Update, Green TCAM-

PC-DUOS+. Even though PC-DUOS+W lookup performance based Internet Routerslandbook of Energy-Aware and Green

was better than that of PC-TRIO on three ACL tests, PC- . Computing Chapman-Hall/CRC Press, 2011.

TRIO look erformance was ite reasonable and in fai%d'] T. Mishra, S.Sahni, and G. Seetharaman, PC-DUOS: Fast
X up p was qui i . ! ' TCAM Lookup and Update for Packet ClassifielSCC 2011.

using PC-TRIO, there was a reduction in TCAM power bys) 7. Wang, H. Che, M. Kumar, and S.K. Das, CoPTUA: Consis-

94% and lookup time by 97% on an average for the ACL tent Policy Table Update Algorithm for TCAM without Locking,

tests, compared to PC-DUOS+. IEEE Transactions on Computes3, 12, Dec 2004, 1602-1614.
So, we recommend PC-TRIO for packet classifiers. [26] T. Mishra and S. Sahni, CONSIST - Consistent Internet Route
Updates,[EEE ISCG 2010.
REFERENCES [27] K. S. Kim and S. Sahni, Efficient Construction of Pipelined

[1] K. Lakshminarayan, A. Rangarajan and S. Venkatachary, Algo- Multibit-Trie Router-Tables,|[EEE/ACM Transactions on Net-

; PP : working 11, 4, 2003, 650-662.
gtlrcl;nz:sof&rMAg\(/)%g(.:ed Packet Classification with Ternary CAMS[ZB] T. Mishra, S. Sahni and G. Seetharaman, PC-DUOS+: A TCAM

[2] F. Zane, G. Narlikar and A. Basu, CoolCAMs: Power-Efficient Architecture for Packet ClassifielisEE Transactions on Com-

; ; puters To appear.
[3] \I\/?AL'\SS;?& F§.rW§£ﬂh”ig Egv%mggvjx\/lgro ?gﬁ’kﬂiogi'r Very Large[29] T. Mishra, S. Sahni and G. Seetharaman, PC-TRIO: An Indlexe

. TCAM Architecture for Packet ClassifierESCGC 2012.
Forwarding TablesiNFOCOM, 2008. . o : -
[4] R. Draves? C. King, S. Venkatachary, and B.Zill, ConstructinEO] W. Lu and S. Sahni, Packet classification using space efficient

Optimal IP Routing TablesNFOCOM, 1999 pipelined multibit tries,IEEE Transactions on Computers?7,
[5] D. E. Taylor and J. S. Turner, ClassBench: A Packet CIassifich- 5, 2008, 591-605. . .
tion Benchmark TON, 15 3. Jun 2007, 499-511. 1] N. Muralimanohar, R. Balasubramonian and N. P. Jouppi,

: . : Optimizing NUCA Organizations and Wiring Alternatives for
6] H. Che, Z. Wang, K. Zheng and B. Liu, DRES: Dynamic Range ;
2 Encoding Schegr]ne for TgAM Coprocesso@Cy57 7, Jul ’ Large Caqhes with CACTI 6.05M December 2007.’ 3-14
2008. 902-915. T [32] J. B. Sulistyo, J. Perry and D. S. Ha, Developing Standard

[7]1 A. Bremler-Barr, D. Hay and D. Hendler, Layered Interval Cells for TSMC 0.25um Technology under MOSIS DEEP Rules,

P Virginia Tech, Technical Report VISC-2003-Blbv 2003.
Codes for TCAM-based ClassificatiodyFOCOM 2009. . -
[8] H. Song and J. Turner, Fast Filter Updates for Packet CIassific@-gl J. B. Sulistyo and D'.S'. Ha_, A New Character_lzatlon Method for
tion using TCAM, Routing Table Compaction in Ternary-CAM, ~ Delay and Power Dissipation of Standard Library Cet.S
GLOBECOM 2006. Design15, 3, Jan 2002, 667-678.

; [34] H. Noda, K. Inoue, M. Kuroiwa, F. Igaue and K. Ya-
[9] D. Pao, P. Zhou, B. Liu, and X. Zhang, Enhanced Preﬂ[g ’ o . ’ .
Inclusion Coding Filter-Encoding Algorithm for Packet Classi- mamoto, A Cost-_Efﬁmeryt ngh-Perf_ormance Dynamlc TCAM
fication with Ternary Content Addressable MemdBgmputers Wlth_Plpellned Hierarchical Searching and Shift Redundancy
& Digital Techniques, IET1, 5, Sep 2007, 572-580. Architecture,lJSSG 40, 1, Jan 2005, 245-253.
[10] S. Suri, T. Sandholm and P. Warkhede, Compressing Twb>] Renesas R8A20410BG 20Mb Quad Search Full Terary CAM.
Dimensional Routing TablesAlgorithmica 35, 4, 2003, 287- http://am.renesas.com/products/memory/TCAM/tceoat.jsp.
300. Tania Banerjee-Mishra received Ph.D. in Computer Scierma fdniversity
; i Of Florida in 2012. She did her Integrated M.Sc. in Mathensagiod M.Tech
- LIJzéinsgpIItEZxr::ggngfC-:rz?\//llglrbsgd éjdogur&e(r)’_lpgfjfka ClaSSIflcatl(lgﬁ CSDP from HIT, Kharagpur. She is currently a Post Doc atversity of

. . Florida.
[12] C. R. Meiners, A. X. Liu, and E. Torng, TCAM Razor: A" gaiaj sahni is a Distinguished Professor and Chair of Coenpand

Systematic Approach Towards Minimizing Packet Classifiers iRformation Sciences and Engineering at the University afriib. He is

TCAMs, ICNP, 2007, 266-275. also a member of the European Academy of Sciences, a Fellow d&,|IEE
[13] C. R. Meiners, A. X. Liu, E. Torng, and J. Patel, SPIITACM, AAAS, and Minnesota Supercomputer Institute, and a iBigtished

Optimizing Space, Power, and Throughput for TCAM-Baseélumnus of the Indian Institute of Technology, Kanpur. In I9%e was

Classification ANCS2011. awarg!ed_the IEEE Computer _Society Taylor L Bo_oth Educgt_imal;d “for
[14] H. Liu, Efficient Mapping of Range Classifier into Temary_contnbunons to Computer Science and Engineering edutaticthe areas
CAM, Hot Interconnects2002, 95-100 of data structures, algorithms, and parallel algorithms™d &m 2003, he

. . was awarded the IEEE Computer Society W. Wallace McDowell riéw/éor
[15] A. X. Liu, C. R. Meiners, and Y. Zhou, All-Match Based Com'contributions to the theory of NP-hard and NP-complete mwis!’. Dr. Sahni

plete Redundancy Removal for Packet Classifiers in TCAM§5 awarded the 2003 ACM Karl Karlstrom Outstanding Educaeard for

INFOCOM, 2008, 5?4'582- “outstanding contributions to computing education througgpired teaching,
[16] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukl@evelopment of courses and curricula for distance educationtributions

Packet Classifiers in Ternary CAMs can be Smal®iGMET- to professional societies, and authoring significant ®okis in several areas

RICS 2006, 311-322. including discrete mathematics, data structures, algoritfamd parallel and
[17] J. van Lunteren and T. Engbersen, Fast and Scalable Pacigibuted computing.” Dr. Sahni has published over threadned research
Classification JJSAG 21, 4, May 2003, 560-571. papers and written 15 texts. His research publications arthe design and

[18] B. Agrawal and T. Sherwood, Ternary CAM Power and De|agna!ysis of effici'ent aIgorithm_s, paralle! computing, in@reection networks,
Model: Extensions and UseEYLS| 16, 5, May 2008, 554-564, Uesidn automation, and medical algorithms.

