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Abstract—PC-TRIO is an indexed TCAM architecture for
packet classification. In addition to index TCAMs, PC-TRIO
uses wide SRAM words. On our packet classifier datasets, PC-
TRIO reduced TCAM power by 96% and lookup time by
98% on an average, compared to PC-DUOS+ [28] that does
not use indexing or wide SRAMs. PC-DUOS+ was shown to
be better than STCAM, which is a single TCAM architecture
conventionally used for packet classification [28]. In this paper, we
also extend PC-DUOS+ by augmenting it with wide SRAMs and
index TCAMs using the same methodology as used in PC-TRIO,
to obtain PC-DUOS+W. On ACL datasets, PC-DUOS+W reduced
TCAM power by 86% and lookup time by 98%, compared to
PC-DUOS+, which demonstrates the effectiveness of indexing and
usage of wide SRAMs in reducing power and lookup time for
packet classifiers.

Index Terms—Packet classifier, incremental updates, power,
TCAM.

I. I NTRODUCTION

Packet classification is a key step in routers for various
functions such as routing, creating firewalls, load balancing
and differentiated services. Internet packets are classified into
different flows based on packet header fields and using a table
of rules in which each rule is of the form(F,A), whereF is
a filter andA is an action. When an incoming packet matches
a rule in the classifier, its action determines how the packet
is handled. For example, the packet could be forwarded to an
appropriate output link, or it may be dropped. Ad-dimensional
filter F is a d- tuple (F [1], F [2], · · · , F [d]), whereF [i] is
a range specified for an attribute in the packet header, such
as destination address, source address, port number, protocol
type, TCP flag, etc. A packet matches filterF , if its attribute
values fall in the ranges ofF [1], · · · , F [d]. Since it is possible
for a packet to match more than one of the filters in a classifier
thereby resulting in a tie, each rule has an associated cost or
priority. When a packet matches two or more filters, the action
of the matching rule with the lowest cost (highest priority)is
applied on the packet. It is assumed that filters that match the
same packet have different priorities.

This material is based upon work funded by AFRL, under AFRL Con-
tract No. FA8750-10-1-0236. (b) Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of AFRL. Approved for public release:
(88ABW-2011-4143)

TCAMs are used widely for packet classification. The
popularity of TCAMs is mainly due to their high-speed table
lookup mechanism in which all the TCAM entries are searched
in parallel. Each bit of a TCAM may be set to one of the
three states 0, 1, and ’?’ (don’t care). A TCAM is used in
conjunction with an SRAM. Given a rule(F,A), the filter
F of a packet classifier rule is stored in a TCAM word and
actionA is stored in an associated SRAM word. All TCAM
entries are searched in parallel and the first match is used to
access the corresponding SRAM word to retrieve the action.
So, when the packet classifier rules are stored in a TCAM in
decreasing order of priority (increasing order of cost), wecan
determine the action corresponding to the matching rule of the
highest priority, in one TCAM cycle. The main limitation of
TCAMs is that these memories are power hungry. In fact at
the same access rate, a TCAM may consume 30 times more
power than an SRAM used for a software based classification
[19]. The more the number of entries in the TCAM, the
higher the power needed to perform a search. This problem is
worsened for packet classifiers since typically a classifierrule
includes port range fields that need multiple TCAM entries
per rule for representation in the TCAM. This is called range
expansion. Given that the source and destination port numbers
are represented in 16 bits, the number of TCAM entries needed
to represent a port range in the worst case is 30 corresponding
to the range[1, 216− 2]. Thus, a filter having both source and
destination port ranges set to[1, 216 − 2] undergoes a worst
case expansion of30× 30 = 900 TCAM entries.

TCAMs are augmented with wide SRAMs and index
TCAMs for scalability and low power consumption. These
techniques are simple and have produced significant benefits
in packet forwarding. We extend the applicability of these
techniques to packet classification, in this paper. Packet clas-
sification is a harder problem than packet forwarding because
each rule in a classifier typically consists of five fields, namely,
source, destination, protocol, source port and destination port,
and a corresponding action. In contrast, a rule in a packet
forwarding table consists of only one field, that is destination
prefix, and a corresponding next hop. The difficulties in using
an indexed TCAM architecture in packet classification are
discussed below. We also discuss ways to overcome these
difficulties and contributions of PC-TRIO.
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A. Problems in storing a classifier in an indexed TCAM

There are two problems in mapping a packet classifier to
an indexed TCAM architecture. The first problem is that the
overlapping of rules may lead a higher priority rule to be stored
in a bucket of entries corresponding to a lower priority index.
This is more likely to happen when we have TCAM buckets
of fixed sizes.

The second problem is the need to include acovering

rule in each TCAM bucket which introduces redundancy. A
covering prefix [2], [3], in the context of packet forwarding
tables, is a default prefix for a TCAM bucket. The presence of
covering prefixes in a TCAM bucket makes every search in the
TCAM bucket return at least one match. In a packet classifier,
covering rules similarly guarantee that a search on a TCAM
bucket matches at least one rule. However, the redundancy
so introduced, in the face of range expansion, could lead to
a huge increase in the number of rules to be stored in the
TCAM. The following example illustrates these points.

Example: Consider the classifier with 4 rules in Figure 1,
where each rule has two fields - a destination, and a source.
The classifier is mapped to the indexed TCAM in Figure 2. The

Source
Filter PriorityAction

Destination

0101

000* 01*

* *

A1
A2
A3
A4

1
2
3
4

00*

0*

1000

R#

R1

R2

R3

R4

Fig. 1. An example classifier
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Fig. 2. Classifier rules stored in a indexed TCAM

data TCAM has two buckets and in this setup, the index TCAM
uses bits from the destination prefix of each rule to index into
the buckets of the data TCAM. Assuming that addresses are
4 bits, suppose a packet arrives with destination and source
addresses as 0000 and 0101 respectively. The best matching
rule from Figure 2 is R3 - the second rule on the first bucket of
the data TCAM and A3 is returned as the action to be applied
on the packet. However, from the table in Figure 1, R2 is the
best matching rule and A2 is the desired action.

Rule R4 in Figure 1 is a covering rule and hence entered in
both the TCAM buckets in Figure 2. A packet classifier may
have several covering rules for a TCAM bucket.

B. Overcoming these problems

If we have a set of independent rules, then both the problems
described above are solved. Two rules areindependent iff no

packet is matched by both the rules. Independent rules may
be placed anywhere in the TCAM since a lookup matches
only one rule and priority resolution is not needed. So a
TCAM storing only independent rules does not need a priority
encoder. Further, covering rules are not needed. Thus, given
a set of independent rules, we can easily identify the indexes
without messing up the priority ordering. This helps us in
adding wide SRAMs as well as index TCAMs and we present
PC-TRIO which is an indexed TCAM architecture for packet
classification. To the best of our knowledge, PC-TRIO is the
first indexed TCAM architecture for packet classification.

C. Contribution

The main contributions in this work are as follows. Firstly,
we now have a low power TCAM architecture for packet
classification. In fact, power consumption in PC-TRIO is up
to 1/30 th of the power consumed by an STCAM which is a
conventional TCAM with port range expansion. The reduction
in power consumption is possible because of selectively acti-
vating only a portion of the TCAM during lookup. Further,
with the use of wide SRAMs, we are able to reduce the
port range expansion problem. The start and end points of a
port are now stored in the SRAM whenever possible. During
lookup, the content of the wide SRAM word is processed
by a specialized and fast hardware. Secondly, PC-TRIO has
faster lookup times and hence higher throughput. PC-TRIO
completes a lookup in at least 1/4th the time taken by PC-
DUOS+ [28], and PC-DUOS+ itself takes about half the time
taken by a search in a STCAM. Thirdly, PC-TRIO is highly
scalable. With the rapid growth of the Internet, one may expect
more and more filter rules to be added to packet classifiers. PC-
TRIO, with its use of wide SRAMs can store a larger number
of classifier rules in a given TCAM, and has a low growth
index. Finally, PC-TRIO makes it possible to implement fast
and incremental TCAM updates. In fact, for a given insert or
delete rule request, PC-TRIO takes two TCAM writes on an
average to update the TCAM.

The rest of the paper is organized as follows. Section II
presents background and related work in this area. Section III
describes the PC-TRIO architecture and associated algorithms
and Section IV presents experimental results. We conclude in
Section V.

II. BACKGROUND AND RELATED WORK

We begin with a description of the related work. Sec-
tion II-A presents the research on TCAM based packet clas-
sifiers. Section II-B describes the existing indexed TCAM
architectures for packet forwarding tables. We discuss the
challenges in using indexed TCAM architecture for packet
classification in Section I-A. Section I-B shows how these
challenges can be tackled.

A. Packet Classifiers

The work on packet classifiers in TCAMs, targets three
main problems: port range expansion, power consumption and
updates. The first two problems are inter-related as reducing
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port range expansion also reduces the power consumption
in a TCAM. Various approaches have been proposed in the
literature to alleviate the range expansion problem. A common
goal in these approaches is to store a classifier rule in a single
TCAM entry. The schemes in [1], [6], [7], [9], [14], [17]
encode the ranges and store modified rules in the TCAM.
As a packet arrives, an encoded search key is created from
the packet header fields using the encoding algorithm and the
TCAM is searched using the encoded search key. Spitznagel
et al. [11] proposed enhancements to the TCAM hardware
to include range comparison. With such an enhanced TCAM
circuit, each rule occupies a single entry in the TCAM.
PC-TRIO, with the aid of wide SRAMs, can store multiple
classifier rules in a single TCAM entry. The common bits in
these rules are stored in the TCAM entry, while the remaining
bits in each rule, including the source and destination ports, are
stored in the corresponding wide SRAM entry. Thus, PC-TRIO
obtains considerable savings of TCAM power. Additionally,
since TCAM lookup time is proportional to the number of
TCAM entries, PC-TRIO supports faster lookups.

Liu et al. [13], approach the range expansion problem
by splitting a d-dimensional classifier into multiple lower
dimensional classifiers each of which can be stored in its own
small TCAM, leading to effective reduction of the range ex-
pansion problem. The algorithm effectively contains the range
expansion problem, reduces power, improves the lookup time
and supports batch updates. The power reduction achieved is
between 35.5% and 89.6% and throughput increased between
1.34 and 5.89 times compared to TCAMs implementing direct
range expansion, which we call STCAM here. PC-TRIO
obtains a power reduction between 56.5% and 96.6% and
throughput increased between 3.92 and 149.92 times compared
to PC-DUOS+ [28]. Power consumption in PC-DUOS+ is
comparable to STCAM, but PC-DUOS+ has up to twice the
throughput of a STCAM.

Compressing packet classifiers by removing redundancies
is an effective strategy to reduce TCAM power consumption.
The approaches in [4], [10], [12], [15], [16], [21] present
algorithms that transform an input classifier to an equivalent
smaller classifier. These algorithms quite naturally contain port
range expansions. The equivalently smaller classifier can be
stored in PC-TRIO to obtain further savings in power and
lookup time. While the compression techniques bring about
reductions in classifier size, they are generally not suitable for
incremental updates, since a rule to be deleted, for instance,
may not be present in the transformed classifier.

Ma and Banerjee introduced index TCAMs to store a pre-
classifier in SmartPC [20]. The pre-classifier in SmartPC is
the index that classifies each incoming packet based on two
header fields (source and destination) only, at the first stage. A
major problem with the pre-classifier construction heuristic is
the assumption that each classifier rule occupies one TCAM
entry in a block. This assumption points to the fact that
SmartPC completely ignores the range expansion problem and
hence is unusable in its current form for packet classification
using TCAMs. If the problem in SmartPC is corrected, it is
still very different than PC-TRIO, since PC-TRIO uses wide
SRAMs, and PC-TRIO has a more advanced mechanism for

identifying the first stage indexes, that does not restrict the
number of dimensions, as SmartPC does to two. Moreover,
the incremental update strategy of SmartPC results in new
rules being added to the general TCAM for most of the time.
This increases the number of general TCAM blocks and hence
degrades the power benefits over time since the general blocks
are always activated on lookup.

Fast updates for packet classifiers is gradually becoming
important, and there have been a number of approaches to
implement fast incremental updates. Song and Turner [8]
describe an algorithm for fast updates in which an explicit
priority value (which we call block number in this paper) is
calculated for each rule based on the rule’s implicit priority,
which is derived from the position of the rule in the classifier,
and the implicit priority values of the overlapping rules. The
computed block number is stored along with the rule in the
TCAM using unused TCAM bits. A new rule may be placed
anywhere in the TCAM. This relieves the TCAM of moving
existing rules to maintain priority ordering. Instead, during
lookup, multiple lookups per packet are performed to identify
the best matching rule.

Mishra, Sahni and Seetharaman in PC-DUOS [24] and
PC-DUOS+ [28] use dual TCAMs for representation and
incremental update of classifiers. PC-DUOS+ improves lookup
performance too, although power consumption is the same as
STCAM storing the classifier rules after a direct expansion
of the port ranges. PC-TRIO is different from PC-DUOS+ in
terms of both TCAM architecture and associated algorithms.
PC-DUOS+ uses two TCAMs whereas PC-TRIO uses five
TCAMs and four wide SRAMs. Both PC-DUOS+ and PC-
TRIO identify independent classifier rules. However, PC-
DUOS+ uses a directed graph representation for the rules
to identify a single set of independent rules, whereas PC-
TRIO uses a multi-dimensional trie representation to identify
two sets of independent rules. Overall, compared to PC-
DUOS+, PC-TRIO uses indexing, wide SRAMs and different
algorithms and data structures to find independent rules, which
further improves lookup performance and significantly reduces
TCAM power consumption.

B. Forwarding tables with indexed TCAMs

The concept of using an index TCAM for a forwarding
table was proposed by Zane et al. [2] and further refined by
Lu and Sahni in [3]. A forwarding table can be viewed as a
one dimensional packet classifier, containing only destination
prefixes. Zane et al. [2] proposed a 2-level TCAM architecture
in which the first level TCAM is an index to the partitions
in the second level TCAM. We refer to a partition in a
TCAM as abucket. The partitions and indexes are constructed
by carving the binary trie representing the prefixes in the
forwarding table.

Lu and Sahni in [3], further augment the traditional 1-
level TCAM lookup structure as well as the 2-level TCAM
structure of Zane et al. [2] with wide SRAMs and store the
suffixes of several prefixes in a single wide SRAM word.
This enables a reduction in both power consumption and total
TCAM memory requirement. Mishra and Sahni, in PETCAM
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Fig. 3. PC-TRIO Architecture

[22] and DUO [23] obtained further reduction in power and
TCAM space for packet forwarding, using the indexing and
wide SRAM schemes. In particular, DUO [23] is a dual TCAM
architecture used for packet forwarding that uses efficient
memory management algorithms for the two TCAMs. These
algorithms help DUO in executing consistent incremental
updates [25], [26].

III. PC-TRIO

PC-TRIO is a comprehensive TCAM based solution for low
power consumption and fast lookup in packet classification,
and includes an architecture and associated algorithms. The
TCAM architecture enables parallel and pipelined access for
faster lookups and power savings. The algorithms help to fill
in the various TCAMs in the system to ensure correct results,
and also to efficiently update the TCAMs when the classifier
is updated.

Given a classifier, the first step in PC-TRIO is to partition
the rule set to eliminate overlap among the rules. In particular,
PC-TRIO partitions the rule set into three subsets, out of which
two subsets contain non-overlapping or independent rules and
the third subset contains the remaining rules. The heuristic
presented in the paper for partitioning the rule set uses a
multi-dimensional trie to represent classifier rules with the
five standard fields, namely, prefixes to source and destination
addresses, protocol type, source port and destination port. A
multi-dimensional trie is a scalable, space efficient represen-
tation of the classifier rules [27], [30]. PC-TRIO uses triesin
the control plane to fill in the TCAMs initially, and to perform
subsequent updates. To generate the first subset of independent

rules, a multi-dimensional trie is constructed with the source
prefix as the first dimension and our heuristic is applied. To
obtain the second subset of independent rules, another multi-
dimensional trie is constructed using the remaining rules,this
time with the destination prefix as the first dimension, and the
heuristic is applied again. Our partitioning strategy is based on
the observation that most of the prefixes are very specific and
do not overlap, irrespective of whether the prefixes represent a
source or a destination. In fact, using our strategy, the number
of rules in the third subset containing the remaining rules was
only 5% on an average on our tests. So, even though the
remaining rules may be used to generate more independent
sets - making the number of overlapping rules even smaller,
there is no tangible benefit in terms of power and performance
than what is achieved with two independent sets. In fact, it may
adversely affect power and performance, as we will soon see.

The second step in PC-TRIO is to store the three subsets of
rules in the TCAM architecture as described in Section III-A.
Each of the two independent subsets of rules, is stored in
its own indexed TCAM and wide SRAM system. The third
subset of remaining rules is stored in a regular TCAM-SRAM
system, and not in an indexed TCAM or wide SRAM, due to
the problems described in Section I-A. Thus the three subsets
of rules are stored in three independent TCAM systems, that
are looked up in parallel to search for a match. So, at the
final stage, the architecture uses a logic circuit to comparethe
priority of the three rules matched from the three subsets and
returns the action corresponding to the highest priority match.

In this context, we note that having more than two indepen-
dent sets will incur higher hardware cost since indexed TCAM,
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wide SRAM systems have to be added for the independent
sets. This will result in higher power consumption and also
decreased performance since the final stage logic to compare
priorities will become a bottleneck.

The PC-TRIO architecture is presented in detail in Sec-
tion III-A. The algorithms for storing the TCAMs using
multi-dimensional tries and priority graphs are discussedin
Section III-B, while the updating algorithms are discussedin
Section III-C. The differences of PC-TRIO with related multi-
TCAM architectures are presented in Section III-D.

A. The Architecture

Figure 3 illustrates the PC-TRIO architecture. It primarily
consists of three TCAMs, the ITCAM (Interior TCAM), the
LTCAM1 (Leaf TCAM) and the LTCAM2. The corresponding
associated SRAMs are: ISRAM, LSRAM1 and LSRAM2,
respectively. The LTCAMs store independent rules, hence both
the TCAMs are augmented with wide LSRAMs and index
TCAMs. The wide LSRAMs store multiple actions and part
of rules in a single word. Thus PC-TRIO needs additional
hardware to extract block number (associated with priorityof
rule) and action corresponding to the matching rule(s) from
a returned LSRAM word. The index TCAMs are labeled as
ILTCAM1 and ILTCAM2 corresponding to LTCAM1 and
LTCAM2, respectively. The index TCAMs also have wide
associated SRAMs, namely, ILSRAM1 and ILSRAM2. These
wide LSRAM words store bucket indexes to access the next
level TCAMs, and bits from the indexes themselves. Thus, PC-
TRIO employs additional hardware to extract bucket number
from multiple entries in the wide SRAM word. The bucket
number obtained is used to activate a specific bucket in the
corresponding LTCAM. Since the rules stored in the two
LTCAMs and the two ILTCAMs are independent, at most
one rule (in each LTCAM and ILTCAM) will match during
a search. So these TCAMs do not need a priority encoder. A
priority encoder assists in resolving multiple TCAM matches
and is used with the ITCAM to access the ISRAM word
corresponding to the highest priority matching rule in the
ITCAM.

A lookup in PC-TRIO is pipelined with 2 stages, ABC and
DEF marked in Figure 3. In the first stage, the ILTCAMs
are searched (A), ILSRAMs are accessed using the address of
the matching ILTCAM1 and ILTCAM2 entries (B), and the
matching wide ILSRAM words are processed to obtain the
corresponding bucket index for LTCAM1 and LTCAM2 (C).
In second stage, the bucket indexes obtained at the first stage
are used to search the corresponding buckets in the LTCAMs,
the ITCAM is also searched (D). Then, the ISRAM and the
LSRAMs are accessed using the addresses of the matching
TCAM entries (E). Finally, the contents of the wide LSRAM
words are processed and the best action is chosen from the
three actions returned by the ISRAM, LSRAM1 and LSRAM2
by comparing the priorities of the corresponding rules (F).
Though the two stage pipeline described above has higher
latency, it has the same throughput compared to a single
stage implementation. Such two stage pipeline architectures
are common in packet forwarding and the associated latency
is generally acceptable.

B. Storing rules in TCAMs

Given an input of packet classifier rules, various preprocess-
ing steps are applied on the rules before storing the classifier
in PC-TRIO. The first step is to create a priority graph and
multi-dimensional tries for the rules in the classifier. This is
further discussed in Section III-B1. In the second and third
steps, the LTCAM1 and LTCAM2 subsystems are populated
as discussed in Sections III-B2 and III-B3, respectively. The
fourth and final step is to store the remaining rules in the
ITCAM in priority order, which is discussed in Section III-B4.

1) Representing Classifier Rules:
a) Priority Graph: The classifier rules are represented in

a priority graph, which contains one vertex for each rule in
the classifier. There is a directed edge (u, v) from vertexu to
vertexv iff (a) the rules corresponding tou andv overlap (i.e.,
at least one packet matches both rules) and (b) the priority of u
is more than that ofv (we assume that overlapping rules have
different priority). For the directed edge (u, v), we say thatu
is the parent ofv andv is the child ofu. The priority graph is
used to assign block numbers to rules/vertices as follows [8].
All vertices with in-degree 0 are assigned the block number
1. Each remaining vertexv is assigned a block number equal
to

1 + max
(u,v)∈E

{block number of u}

whereE is the set of edges in the priority graph. Thus a child
of any vertex is assigned a block number that is at least one
more than the block number of this vertex.

Example: Suppose a classifier has four two-field rules as
shown in Figure 4. Figure 5 shows the priority graph for

Index Rule (Source, Destination) Priority
R1 (0.0.0.0/0, 0.0.0.0/16) 1
R2 (1.0.0.0/8, 1.0.0.0/16) 2
R3 (0.0.0.0/8, 0.0.0.0/8) 3
R4 (0.0.0.0/0, 0.0.0.0/0) 4

Fig. 4. A classifier with four rules

this classifier. Consider rules R1 and R4. These two rules
overlap with each other and rule R1 is of higher priority
compared to rule R4. Thus there is an edge between the
vertices corresponding to rules R1 and R4 and the direction
of the edge is from rule R1 to R4. On the other hand, there is
no edge between the rules R1 and R2, because the destination
prefix fields of these rules are non-overlapping. For example,
R2 matches destination addresses with 1 on the first octet,
whereas R1 matches those with 0 on the first octet. Thus,
the sets of addresses matched by R1 and R2 are disjoint. In
Figure 5, the block number of each rule is given by the side
of the corresponding vertex inside a square. corresponding
square.

b) Multi-dimensional Trie:A trie is a binary tree used
to store prefixes. The left child of a node of a trie representsa
0 and the right child a 1. Figure 6 shows an example of a trie
representing five prefixes, where, ‘*’ represents a sequenceof
trailing don’t care bits. We need a multi-dimensional trie to
represent a classifier rule, with each field being represented by
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Fig. 5. A priority graph
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1010

0
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H2
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Fig. 6. Trie for example prefix setC = {000∗, 001∗, 010∗, 011∗, 00∗}.
Packet with address 000* is forwarded to next hopH1.

a trie. An example of a multi-dimensional classifier is given
below.

Example: Consider a two dimensional classifier with
five rules described as follows: The corresponding multi-

R# Rule (Source, Destination) Priority
R1 (*, 00*) 1
R2 (*, 01*) 2
R3 (010*, *) 3
R4 (11*, *) 4
R5 (*, *) 5

Fig. 7. A classifier with five rules

0 1

1

0

1

0

0 1

R5

R3
R4

R1 R2

Fig. 8. Multi-dimensional trie, with source as the outermost trie

dimensional trie is illustrated in Figure 8. In this Figure,the
outermost trie (whose nodes are colored blue) represents the
source prefixes of the rules, while the next level tries represent
the destination prefixes. The branching out of a next level trie
from a node is represented by arrows in the figure. The next
level trie nodes that represent the rules are marked with R#.

c) Leaves of leaves set:One of the very first challenges
in designing PC-TRIO is identifying the maximum number of
rules that are pairwise independent in a classifier. This is an
NP-complete problem which can be easily proved by reducing

Algorithm: findNode(node) Inputs:
node: a trie node, initially set to the root of a multi-dimensional trie.
Output:
a leaves of leaves set of protocol nodes storing classifier rules.

for each child i of node
findNode(node→child[i]);

endfor
if (node is a leaf) // true if node has no left and right child.

if (node contains root of a next-level trie)
findNode(node→trie→root);

else// node belongs to trie for the last field (protocol)
append protocol node to leaves of leaves set

endif
endif

Fig. 9. Selecting protocol nodes for leaves of leaves set

an instance of the problem of finding maximal independent set
in a graph to the problem of finding the maximum number of
independent rules.

To find an independent rule set in acceptable computing
time, we relax the “largest set” requirement and instead look
for a large set of independent rules using a two step process.
In the first step, we create aleaves of leaves set[24] of
protocol nodes in a multi-dimensional trie using the algorithm
in Figure 9.

The nodes belonging to the leaves of leaves set in a trie
are obtained by traversing the multi-dimensional trie fromthe
root to the leaves of the source trie and then from these leaves
into their attached destination trie and then from the leaves of
the destination trie into the leaves of their attached innermost
trie for the protocol field. The leaves of leaves set of rules
corresponding to the multi-dimensional trie of Figure 8 is{R3,
R4}. The rule R1 is not in the leaves of leaves set since its
destination trie, branches out of a non-leaf node of the source
trie. Similarly, R2 is not in the leaves of leaves set. Rule R5
does not even belong to a leaf of the destination trie, and of
course, the destination trie itself branches out of a non-leaf
node in the source trie.

Theorem 1:The rules in a leaves of leaves set of a multi
dimensional trie are mutually independent.

Proof: Consider two rules R1 and R2 in the leaves of
leaves set that are overlapping, i.e. not mutually independent of
each other. In other words, there are some common addresses
matched by both the rules R1 and R2. Note that, for two rules
to be overlapping, all the fields in the rule must be overlapping
as well [26].

Now, consider the outermost trie. The prefixes for the
corresponding field in R1 and R2 trace up to leaf level of
this trie, since R1 and R2 belong to the leaves of leaves set.
There are two possibilities, either the leaf in the outermost
trie traced by R1 is the same, or different than that traced by
R2. If it is different, then the corresponding prefix fields are
non-overlapping, and hence R1 and R2 are non-overlapping.
But this is in contradiction with our selection for R1 and R2.
So, both the rules branch out of the same leaf of the outermost
trie.

This logic may, similarly, be applied to the next level trie
and to all the other tries in sequence in the multi-dimensional
trie. Then we get that all the fields of R1 and R2 are the same
and so R1 and R2 cannot be different rules. In other words,
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R1=R2.
The second step in finding a set of independent rules is

needed for a packet classifier with source and destination port
ranges. The leaves of leaves set built so far, has independent
entries. However, it is possible that for each entry in the
leaves of leaves set, there are more than one rule with the
same source/destination/protocol prefixes, but differentsource
and destination port ranges. Therefore, in this second step,
we process each leaves of leaves set, and identify a set of
independent rules. This is done, by building a small priority
graph with rules only in the leaves of leaves set.

It is easy to check that vertices in the priority graph with
in-degree 0 comprise a set of independent rules. If there
were any two rules that overlap, the corresponding vertices
will have an edge between them. In that case, one of the
vertices will not satisfy the condition of in-degree = 0. Thus,
vertices in the priority graph with in-degree 0 comprise a set
of independent rules. The vertices corresponding to rules R1
and R2 in Figure 5 have in-degree 0.

d) Exploiting characteristics of a classifier:A set of
classifier rules mainly consist of four classes of rules, namely,
those with more specific source address prefixes, those with
more specific destination address prefixes, those with more
specific source and destination address prefixes, and those
with both the prefixes as non-specific. A prefix is more
specific when the prefix is long and hence includes a small
set of addresses. An example of a very specific prefix is,
156.122.78.226/30, which is an IPv4 prefix of length 30, and
includes only 4 addresses. In contrast, a non-specific prefix
includes a large set of addresses. An extreme non-specific
prefix is ‘*’. This observation helps us in identifying two sets
of independent rules. The first set is obtained by constructing
a multi-dimensional trie with the destination prefix as the
outermost trie, while the second set is obtained by constructing
another trie where source prefixes constitute the outermosttrie.

0

1

0

1

1

R1 R2 R3

R4

R5
0

0 1

Fig. 10. Multi-dimensional trie, with destination as the outermost trie

Example: Figure 10 represents a version of the multi-
dimensional trie of Figure 8 in which the outermost trie is
the destination trie. The leaves of leaves set in this trie is
{R1, R2}. Note that the union of the leaves of leaves set, for
the multi-dimensional tries of Figures 10 and 8, is{R1, R2,
R3, R4}, which covers all the rules except R5.

Thus, we construct two multi-dimensional tries for PC-
TRIO. A multi-dimensional trie, Trie1, is first created in which
each dimension represents one field of a rule. Initially, Trie1
is three-dimensional, with the three fields, source, destination

and protocol of a classifier rule used for this purpose. The
fields appear in the following order in the trie:<destination,
source, protocol>. We assume that the destination and source
fields as well as the protocol field of the filters are specified
as prefixes. So, these are represented in a trie in the standard
way with the left child of a node representing a 0 and the
right child a 1. A classifier rule, along with its source and
destination port ranges, is stored on the protocol node thatis
arrived at after traversing the trie starting from its root,using
first the destination, then the source and finally the protocol
fields of the rule. The nodes belonging to the leaves of leaves
set in Trie1 are obtained by traversing the multi-dimensional
trie from the root to the leaves of the destination trie and then
from these leaves into their attached source trie and then from
the leaves of the source trie into the leaves of their attached
innermost trie for the protocol field.

We identify a set of independent rules from Trie1 using the
two step process that includes identifying the leaves of leaves
set and building a priority graph. All the remaining rules are
used to create another multi-dimensional trie, Trie2, in which
fields in a filter rule appear in the order<source, destination,
protocol>. Thus all rules are represented in Trie1, and only
those rules that are not in the leaves of leaves set for Trie1
are included in the construction of Trie2. Note that the source
and destination tries are switched in Trie2, with respect to
Trie1. So, while destination trie is the outermost trie in Trie1,
in Trie2, source is the outermost trie. The Trie1 and Trie2
for the rules of Figure 7 are given in Figures 11 and 12

0

1

0

1

1

R1 R2 R3

R4

R5
0

0 1

Fig. 11. Trie1 for classifier rules in Figure 7

0

1

0

1

1

R5

R3

R4

Fig. 12. Trie2 for classifier rules in Figure 7.

respectively. Note that the rules R1 and R2 are not included
in Trie2. The rules in Trie1 and Trie2 are stored in LTCAM1
and LTCAM2 respectively.

2) Storing rules in the LTCAM1:So far, we have identified
the independent rules to be stored in the LTCAM1. In this
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Fig. 13. Data encoding in a wide SRAM word

section we describe how these rules are stored in the LTCAM1
subsystem which comprises the LTCAM1 and LSRAM1, and
the corresponding index structure ILTCAM1 and ILSRAM1.
The method is identical for the LTCAM2 subsystem. The
process of storing rules in the LTCAM1 subsystem is described
in five subsections below. First, the format of storing informa-
tion in a wide LSRAM word is discussed (Section III-B2a),
then we describe the creation of LTCAM1 entries using the
process of carving (Section III-B2b). Next we describe partial
port range expansion (Section III-B2c) that may be necessary,
and finally, the creation of ILTCAM1 and ILSRAM1 entries
(Section III-B2d).

a) Wide SRAM Word Format:Once the rules to be stored
in LTCAM1 are identified, subtries of the multi-dimensional
trie are carved and rules in the protocol nodes in a subtrie are
stored in a LSRAM1 word. In particular, for each rule in a
protocol node we store the rule’s source and destination port
ranges, block number, and action. We also store the suffix of
a protocol node, which is the path from the root of the carved
subtrie to the protocol node. Figure 13 shows a format for
encoding this information in a wide SRAM word. The fields
in this format are described briefly as follows:

1) Match start position: This field specifies the positions of
the first bit in the source, destination and protocol fields of
a packet header starting from which suffixes of protocol
nodes in the SRAM word must be matched.

2) Count: This is the number of protocol nodes in the leaves
of leaves set stored in the SRAM word.

3) len(Si): This field specifies the length of the suffix for
protocol nodei in the SRAM word.

4) Ci: This gives the number of classifier rules stored for
protocol nodei.

5) Dataj : Data1, · · · , DataN give details of theN rules
in the carved subtrie. The rules for protocol node 1 of
this subtrie come first, followed by those of the second
protocol node and so on.Dataj gives the block number,
action, source and destination port range types for thejth
classifier rule.

6) Si: This field stores the suffix for protocol nodei.
7) Port ranges: Stores the port ranges for theN rules.

There are three types of ranges found in a classifier. These
are: a whole range ([0-65535]), a range with the same start
and end point, and a range with different start and end points.
The port range type subfield in the Data field represents these
three types of ranges using two bits. To save space in a SRAM
word, a whole range is never entered and only one port number
is entered for a range with the same start and end points.

b) Creating LTCAM1 entries:A trie is carved into sub-
tries to assign rules to the wide SRAM words. Before carving
takes place, we calculate the number of SRAM bits needed

to store the rules in Trie1. The Trie1 is carved using the
carving heuristicvisit postorder of DUO [23] that has been
enhanced for multi-dimensional tries. The heuristic traverses
the trie in post order manner, and whenever a subtrie is found
that requires SRAM bits less than or equal to the size of an
SRAM word, that subtrie is a potential candidate for carving.
The carving happens if it creates an independent (disjoint)
entry for LTCAM1. The path starting from the root of Trie1

from destination trie

0

0 1

1

1

with prefix 1101

LTCAM Entries:   

1101 00?? ????
1101 01?? ????
1101 11?? ????

100 450
bits

200
bitsbits

Fig. 14. Nodes in a source trie is being carved.

to the root of the subtrie defines an LTCAM1 entry.
Example Figure 14 shows a portion of a source trie that

hangs off a destination trie, where carving takes place at nodes
00, 01, and 11 of the source trie. The path from the root to
the node of the destination trie from which the source trie
hangs off is 1101. Thus, after carving the node at 00 on the
source trie, the LTCAM1 entry is 1101 00?? ????, assuming
addresses and protocol fields are represented using 4 bits each.
Similarly, the two other LTCAM1 entries in this example are
1101 01?? ???? and 1101 11?? ????. Figure 14 also shows
a size assignment (in bits) on the three nodes where carving
takes place. These sizes are computed for all the trie nodes
even before the carving algorithm is invoked. The size assigned
to a trie node represents the number of LSRAM1 bits needed to
store all the classifier rules (for LTCAM1) in a subtrie rooted
at that node. For example, for a subtrie rooted at the source
node 01, the number of bits needed to store the action, block
number, port ranges of classifier rules and suffixes of protocol
nodes present in this subtrie, is 450. If the actual width of
a SRAM word is, say, 500 bits, then the rules in this subtrie
will fit in an SRAM word and we may carve at the source
node 01. A corresponding LSRAM1 entry is constructed for
the classifier rules in the format given by Figure 13.

The carving heuristic carves a noden on the trie when any
of the following two conditions is true. Here,p is the parent
of n in the trie.

C1) The size assigned ton is less than the width of a
SRAM word, but that assigned top is more than the
the width of a SRAM word.

C2) A descendant ofp was carved.
The second condition ensures that the carving creates disjoint
TCAM entries [23].
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c) Partial port range expansion:: It is possible that the
SRAM bits needed to store the classifier rules for LTCAM1
on a protocol node exceeds the capacity of a wide SRAM
word. This case is shown in Figure 15(a) where the black
node is a protocol node in the leaves of leaves set and the size
assigned to it is 600 bits. Suppose the width of the SRAM
word is 500 bits. Then to avoid overflowing an SRAM word,
we must split the rules in the protocol node, into two or more
SRAM words. Instead of replicating the LTCAM1 entry for
each of the split SRAM words, we create a source port range
trie as shown in Figure 15(b), and carve nodes on this trie to

600 bits

(a) a proto-
col node

600 bits

400 bits 200 bits

(b) a new source port trie is
attached to the protocol node

Fig. 15. Prefixes in forwarding table before and after applying updates

create independent LTCAM1 entries. Each node in the source
port trie inherits those classifier rules (for LTCAM1) from the
protocol node that have their source port range overlap with
the port range represented by the trie node. Thus multiple
copies of a rule may be created, one for each trie node with
port range overlapping the source port range of the rule. After
the source port trie is created, the carving heuristic resumes
its traversal along the source port trie, and carves source port
nodes if they satisfy either condition C1, or C2. In the example
of Figure 15(b), two LTCAM1 entries are created, one each
for the two carved nodes. These LTCAM1 entries differ on
the first bit on the source port field, with one entry having
a 0 while the other having a 1. If the classifier rules in a
leaf node of the source port trie overflows an SRAM word,
then a destination port trie is created for the destination port
ranges on rules of that leaf node, and the carving heuristic
finds appropriate nodes to carve on the destination port trie.

The source and destination port tries are thus created in PC-
TRIO only when necessary, and then, to minimize the range
expansion problem we use multi-bit tries for storing the port
ranges. The bits used to arrive at a node in the multi-bit trie
define an LTCAM1 entry.

d) Creating ILSRAM1 and ILTCAM1 entries:After carv-
ing Trie1 to create suffixes for entering into LSRAM1, we
carve Trie1 again a second time, to create subtries that contain
LTCAM1 entries. All LTCAM1 entries in a subtrie are entered
in a LTCAM1 bucket. Thus, at the end of this carving step, the
LTCAM1 entries are partitioned into buckets. The bits from
the root of the multi-dimensional trie to a carved node defines
an index that points to an LTCAM1 bucket.

After partitioning the LTCAM1 into buckets, Trie1 is carved
a third and final time. This time, a carved subtrie contains
indexes to LTCAM1 buckets. Suffixes of these indexes, along
with the corresponding LTCAM1 bucket indexes, are stored
in the ILSRAM1, and the bits on path from the root of the
Trie1 to a carved node define an ILTCAM1 entry.

3) Storing rules in LTCAM2:This is done exactly as for
LTCAM1, by processing the rules stored in Trie2. In particular,
Trie2 undergoes carving in a similar manner as described for
Trie1 and the LTCAM2 system is populated. The remaining
rules, i.e. rules that are stored neither in the LTCAM1 nor in
the LTCAM2 subsystem, are stored in the ITCAM.

4) Storing rules in the ITCAM:The ITCAM does not have
a wide ISRAM, hence, a rule to be entered in the ITCAM,
must have its port range stored in the ITCAM itself. An
ISRAM word contains the action and block number of a
classifier rule stored in the corresponding ITCAM entry. We
use DIRPE to encode these port ranges on the ITCAM. DIRPE
is suitable for incremental updates, unlike database dependent
range encoding schemes. However, if fast incremental updates
are not needed, then any range encoding scheme may be
chosen for the ITCAM.

C. Incremental Updates

Merge two nodes in case of a delete

Change Trie carving if needed
Split an existing node in case of an insert

Update priority graph

Update Trie1 and if needed Trie2

Update TCAMs

Insert or delete request
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Fig. 16. Flow for incremental updates

Figure 16 gives the overall flow of the updates that take
place when a request to insert or delete a rule is received.
After an update request is issued, the priority graph is updated
as described in Section III-C1. Then Trie1 and, if necessary,
Trie2 are updated as described in Section III-C2. As the tries
are updated, it may be necessary to carve the tries at different
trie nodes. This is discussed in Section III-C3. Updating the
TCAMs is discussed in Section III-C4.

1) Updating the priority graph:To insert a new rule, the
first step is to store the rule in the priority graph. A new vertex
v is created for the rule. The existing rules that overlap with
v are identified and new edges are formed betweenv and
the vertices of overlapping rules, with directions of the edges
set from the higher to the lower priority rules. Then, a block
number is assigned tov, which is one more than the maximum
block number of the nodes from whichv has an incoming
edge. If the block number of a child vertex is not more than
that assigned tov, the child’s block number is updated so that
it is at least one more than the block number ofv. If the
rule r corresponding to this child vertex is stored in ITCAM,
then, r must be moved to the ITCAM block represented by
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PC−DUOS+W PC−TRIOPC−DUOS [24] PC−DUOS+ [28]

Fig. 17. Sequence of development of TCAM architectures
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Fig. 18. Differences among the architectures

its updated block number, and the ISRAM entry forr is also
updated with the changed block number. On the other hand, if
r is in one of the LTCAMs, then, we simply changer’s block
number in the corresponding LSRAM entry. Updates to block
numbers are propagated to all vertices reachable fromv.

To process a delete request, the vertex corresponding to the
rule along with the incident edges is removed from the priority
graph.

2) Updating the tries: To insert a new rule, the rule is
first added to Trie1. If the rule is an independent rule in a
protocol node in the leaves of leaves set, then it is inserted
in the LTCAM1. Otherwise, the rule is added to Trie2. If the
rule is an independent rule in a protocol node in the leaves of
leaves set for Trie2, then the rule is inserted in the LTCAM2.
Otherwise, the rule is inserted in the ITCAM.

If a new rule is stored in the LTCAM1 or the LTCAM2,
then some of the existing rules in that TCAM may no longer
be independent. If such a non-independent rule exists in the
LTCAM1, then that rule is added to the Trie2 and if the rule
can be added to the LTCAM2 it is moved from the LTCAM1
to the the LTCAM2. Otherwise, the rule is moved from the
LTCAM1 to the ITCAM. Similarly, a new rule added to the
LTCAM2 may cause some of the existing LTCAM2 rules to
be moved to the ITCAM.

To delete a rule, the rule is deleted from Trie1 and also
from Trie2 if it was stored in Trie2. The rule is then deleted
from the TCAM that stores the rule.

3) Updating the trie carving:We now discuss the dynamics
of creation and merging of LSRAM words when a new rule
is added or an existing rule is deleted. Both Trie1 and Trie2
contain nodes that were carved to create TCAM and SRAM
entries. We describe how these entries change for Trie1. The
process is similar for Trie2. When a rule is added to Trie1 at
nodet, if there is an ancestora of t, where carving was done
to create a wide LSRAM1 words, and if there is space in
s to place the action, block number, port ranges of the new
rule, then, the new rule is placed ins. If there is no space
in s, then the contents ofs are split, by carving descendants
of a to create two or more LTCAM1 entries. If, on the other
hand,t does not have an ancestora, then one of the two things

below may happen. If there is an ancestorb of t, such thatb
has at least one carved descendant and the subtrie rooted atb

needs fewer SRAM bits than the width of a SRAM word to
represent the classifier rules, thenb is carved. As a result, the
new rule is stored with some existing rules in a new SRAM
word. Note that the existing rules, have additional suffix bits
in the newly created SRAM word and old LTCAM1 entries
for the existing rules are deleted. If no suchb exists, a new
LTCAM1 entry is created by carving att. The corresponding
LSRAM1 word contains only the newly added rule.

When a rule in an LTCAM1 is deleted, then the rule is
first removed from the LSRAM1 word. If the LSRAM1 word
becomes empty, then the corresponding LTCAM1 word is
deleted. Otherwise, if the contents of the LSRAM1 word can
be merged with another LSRAM1 word then a new LTCAM1
entry is created while the LTCAM1 entries for the merged
words are deleted.

The algorithms to merge and split buckets on the LTCAMs
are similarly based on manipulating the carving in Trie1 and
Trie2.

4) Updating the TCAMs:To insert or move a rule in a
TCAM we need a free slot at an appropriate location in the
TCAM. This slot can be obtained efficiently using memory
management algorithms developed for TCAMs. In particular,
the memory management schemes from PC-DUOS+ [28] may
be used. For the ITCAM of PC-TRIO, we implemented the
DLFS PLO (Distributed and Linked Free Space with Prefix
Length Ordering) scheme, as its the most efficient scheme
known to us for moving free slots to a desired location in a
TCAM. In the DLFS PLO initial rule placement scheme, free
slots are kept in the region between two blocks. Additionally,
there may be free slotswithin a block. So a list of free slots
is maintained for each block on the TCAM, with the list being
empty initially. As rules are deleted from a block, the freed
slots are added to the list for that block. Thus, DLFSPLO
requires no moves for most of the time to get or return a free
slot.

The memory management scheme for the LTCAM of PC-
DUOS+ is relatively simple as all the rules in the LTCAM
are independent so a new rule may be inserted anywhere in
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the TCAM. However, we still need to locate a free slot. The
LTCAM memory management algorithm creates a linked list
of the free slots. When a free slot is needed, a slot is obtained
from the head of the free slot list. PC-TRIO uses this memory
management algorithm for its LTCAM1 and LTCAM2.

D. Differences among PC-DUOS, PC-DUOS+, PC-DUOS+W
and PC-TRIO

Figure 17 illustrates our sequence of development of var-
ious TCAM architectures for packet classification. We first
developed PC-DUOS[24], which uses two TCAMs for packet
classification, which was improved in PC-DUOS+[28] re-
sulting is faster lookup times and updates. Both PC-DUOS
and PC-DUOS+ partition the classifier into two subsets of
rules - the first subset consisting of independent rules and
the second subset containing the remaining rules. The two
subsets are stored in two regular TCAMs. Next, PC-DUOS+
was extended to PC-DUOS+W by using an index TCAM and
wide SRAM for the independent subset of rules. Following
PC-DUOS+W, we developed PC-TRIO, in which the classifier
is partitioned into three subsets. Figure 18 summarizes the
differences among these architectures.

In addition to architectural and algorithmic differences from
the other architectures, PC-TRIO does not guarantee that the
rules in the LTCAMs are of the highest priority among all
overlapping rules. Thus, PC-TRIO must wait for an ITCAM
lookup to complete even if there are matching rules in the
LTCAMs. Although the rule assignment algorithms for PC-
TRIO may be modified so that the LTCAM rules are the
highest priority among all overlapping rules (and thus avoid
having to wait for an ITCAM lookup to complete in cases
when a match is found in an LTCAM), doing so retards the
performance of PC-TRIO to the point where it offers little or
no power and lookup time benefit over PC-DUOS+W.

IV. EXPERIMENTAL RESULTS

We compare PC-TRIO, with PC-DUOS+W and PC-DUOS+
[28]. PC-DUOS+ was compared with STCAM (Single TCAM)
which is conventionally used for packet classification. This
comparison in [28] showed that PC-DUOS+ is superior to
STCAM. Hence we preclude STCAM in our comparison
with PC-TRIO. We first give the setup used by us for the
experiments in Section IV-A and then describe our benchmarks
in Section IV-B. Finally we present our results in Section IV-C.

A. Setup

We programmed the rule assignment, trie carving and
update processing algorithms of PC-TRIO using C++, and
compared their performance on an x86 Linux box with a 64-
bit, 1.2GHz CPU. It is difficult to get real life packet classifiers
from ISPs, mainly due to security reasons. So, we generated
test classifiers using ClassBench [5], which is a well known
tool for generating synthetic classifiers and packet traces.
The classifiers generated using ClassBench closely model real
life packet classifiers. The three different types of classifiers
modeled by ClassBench are access control lists, firewalls and

IP chains. The 12 seed files included in ClassBench contain the
basic parameters used to generate the classifiers of a specific
type. Each generated rule has the traditional 5-field filter,
namely, source address, destination address, source port range,
destination port range, and protocol. We generated the test
classifiers, by using the seed files and specifying the number
of rules in each classifier.

Further, we designed a circuit for processing wide SRAM
words using Verilog and synthesized it using Synopsys Design
Compiler to obtain power, area and gate count estimates. We
used CACTI [31] and a TCAM power and timing model [18]
to estimate the power consumption and search time for the
SRAMs and the TCAMs respectively. The process technology
used in the experiments is 70nm and the voltage is 1.12V. It is
assumed that the TCAMs are being operated at 360MHz [35].

The TCAM and SRAM word sizes used are consistent for
all the architectures used in the comparison. The word size is
144 bits for the TCAMs. For SRAMs we have different word
sizes depending upon the TCAMs they are used with. The
ISRAM words of all the architectures, as well as the LSRAM
words of PC-DUOS+, are 32 bits wide. The LSRAM1 and
LSRAM2 words of PC-TRIO and the LSRAM words of PC-
DUOS+W are 512 bits, while the ILSRAMs are 144 bits wide.
The bucket size for LTCAMs in PC-TRIO and PC-DUOS+W
is set to 65 TCAM entries. PC-DUOS+ uses DIRPE [1] to
encode port ranges. The classifier rules stored in the ITCAMs
of PC-TRIO and PC-DUOS+W also use DIRPE to encode
port ranges. Since the TCAM word size is set to 144 bits, we
assume that 36 bits are available for encoding each port range
in a rule. With this assumption, we use the strides 223333 as
these give us minimum expansion of the rules [1], [24].

B. Datasets

We used three benchmarks derived from ClassBench [5].
The first benchmark consists of large classifiers, each classifier
containing about 100,000 rules, with one classifier for eachof
the 12 seed files in ClassBench. This benchmark is used to
compare the number of TCAM entries, power, lookup per-
formance and space requirements of PC-TRIO, PC-DUOS+W
and PC-DUOS+ [28].

The second benchmark consists of medium sized classifiers,
with each classifier containing about 20,000 rules. For eachof
the 12 seed files we generated 10 such datasets. Thus, this
benchmark consists of 120 classifiers and is used to analyze
the variance of PC-TRIO performance.

The third set of benchmarks was reused from [28]. There
are 13 datasets here which are used to compare incremental
update performance of PC-TRIO, with PC-DUOS+ [28] and
PC-DUOS+W.

C. Results from the first benchmark comprising large classi-
fiers

1) Number of TCAM entries:Using wide SRAM words
to store portions of classifier rules, reduces the number of
TCAM entries. Figure 19 gives the results of storing our
datasets in the three architectures. The first, second and third
columns show the index, name, and the number of classifier
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Index Dataset #Rules PC-DUOS+ PC-DUOS+W PC-TRIO
Entries #ITCAM Watts Time(ns) Entries #ITCAM Watts Time(ns) Entries #ITCAM Watts Time(ns)

1 acl1 99309 117033 379 36 2624.39 21146 379 0.23 1.50 21085 182 0.19 2.00
2 acl2 74298 101857 19421 31 1122.39 37491 19421 6.35 33.16 36593 18439 6.04 151.93
3 acl3 99468 131243 30859 40 1640.47 52632 30859 9.47 81.19 26823 1017 0.40 2.89
4 acl4 99334 127320 25189 39 1730.46 49912 25189 7.98 47.96 34034 6547 2.32 26.11
5 acl5 98117 105375 1535 32 2072.16 32932 1535 1.29 0.41 34993 2209 0.77 5.68
6 fw1 89356 142085 91473 43 2466.72 98425 91473 28.52 2318.82 26610 4864 1.60 16.71
7 fw2 96055 129249 27084 39 1543.76 43146 27084 8.90 86.77 22196 1494 0.53 3.63
8 fw3 80885 117731 39199 36 1007.04 51228 39199 11.99 215.81 26269 7479 2.38 30.69
9 fw4 84056 211403 116149 64 3182.03 131505 116149 35.46 2139.81 27617 4894 1.60 15.86
10 fw5 84013 111989 55650 34 930.94 65598 55650 17.00 616.09 22361 3454 1.15 9.72
11 ipc1 99198 112154 22165 34 1288.02 41920 22165 6.82 45.81 23894 567 0.26 2.10
12 ipc2 100000 100000 30133 30 784.69 47247 30133 9.23 114.37 20195 0 0.09 1.45

Fig. 19. Number of TCAM entries, ITCAM entries and TCAM power and lookup time in PC-DUOS+, PC-DUOS+W, PC-TRIO

Index Dataset PC-DUOS+ PC-TRIO Improvement
Power (mW) Lookup Time (ns) Power (mW) Lookup Time (ns) Ratio

Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. Power Time
1 acl1 5511.72 15.54 228.64 1.31 315.87 11.90 1.53 0.04 17.45 149.92
2 acl2 6018.23 46.56 145.75 2.45 434.11 23.18 1.40 0.04 13.86 103.90
3 acl3 5819.47 25.88 113.39 1.28 2140.47 45.20 22.60 1.08 2.72 5.02
4 acl4 5651.50 55.68 113.54 3.07 2460.07 80.46 28.95 2.46 2.30 3.92
5 acl5 3543.97 116.27 80.37 6.07 1395.74 71.70 9.92 1.33 2.54 8.10
6 fw1 6916.64 83.74 109.66 3.13 350.62 5.29 1.27 0.01 19.73 86.05
7 fw2 6104.80 26.05 147.12 2.47 201.82 0.95 1.22 0.00 30.25 120.77
8 fw3 5989.51 92.88 93.51 5.44 377.30 7.30 1.33 0.01 15.87 70.17
9 fw4 10212.47 72.43 209.17 2.88 781.97 12.46 2.63 0.07 13.06 79.48
10 fw5 5480.81 37.00 63.46 0.76 424.71 7.25 1.43 0.02 12.90 44.45
11 ipc1 5211.18 19.70 108.23 1.19 811.96 8.68 2.58 0.05 6.42 41.89
12 ipc2 4755.23 2.09 61.58 7.29 188.05 0.39 1.22 0.00 25.29 50.63

Fig. 20. Average power and lookup time for PC-DUOS+ and PC-TRIO

rules, respectively, of a dataset. The fourth, fifth and sixth
and seventh columns give for PC-DUOS+, the total number
of TCAM entries, the number of ITCAM entries, the TCAM
power and lookup time, respectively. Similarly, the eighth,
ninth, tenth and eleventh columns give the corresponding
numbers for PC-DUOS+W and the remaining four columns
give those for PC-TRIO.

Figure 21(a) gives the TCAM compaction ratio of the three
architectures, obtained by dividing the number of TCAM
entries for each dataset by the number of rules in the classifier.
PC-DUOS+ does not use wide SRAMs, hence there is no
compaction, instead, there is expansion to handle port ranges.
Thus, the compaction ratio for PC-DUOS+ is at least 1
for every dataset. The compaction achieved by PC-TRIO is
more than that of PC-DUOS+W for almost all the datasets.
This is because, PC-TRIO has fewer ITCAM entries and
therefore stores more rules in wide SRAM words. For acl5,
PC-DUOS+W identified more independent rules compared
to PC-TRIO. The algorithm to identify independent rules is
the same for PC-DUOS+W and PC-DUOS+ which results in
identical ITCAM entries for these two architectures.

No classifier rules in the LTCAMs of PC-DUOS+W
and PC-TRIO needed partial port range expansion (Sec-
tion III-B2c). So all LTCAM entries in PC-DUOS+W and
PC-TRIO were at most 72 bits.

2) Power: Figure 19 gives the TCAM power consumption
during a lookup, while Figure 21(b) gives the normalized total
power obtained for each dataset by dividing the total TCAM
and SRAM power in an architecture by that of PC-TRIO
during a lookup. The vertical axis is scaled logarithmically
and based at 1. PC-TRIO uses less power for all datasets
except acl5. The average improvement in power with PC-
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Fig. 21. Comparison of compaction ratio, total power, lookup time and area

TRIO is 96% relative to PC-DUOS+, and 65% relative to
PC-DUOS+W. The average improvement in power with PC-
DUOS+W is 71%, relative to PC-DUOS+. The maximum
improvement with PC-TRIO is observed for ipc2 (99%) and
the minimum for acl2 (80%), compared to PC-DUOS+. The
maximum improvement with PC-DUOS+W is observed for
acl1 (99%) and the minimum for fw1 (35%), compared to
PC-DUOS+. The maximum improvement with PC-TRIO is
observed for ipc2 (98%) and the minimum for acl1 (2%),
compared to PC-DUOS+W.
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3) Lookup Performance:Figure 21(c) gives the average
lookup time, normalized with respect to that of PC-TRIO.
TCAM search time is proportional to the number of TCAM
entries. Hence, PC-DUOS+ requires the maximum time.

PC-DUOS+W is faster than PC-TRIO for the ACL tests
acl1, acl2 and acl5. For these datasets, the number of ITCAM
entries in PC-DUOS+W and PC-TRIO (columns 9 and 13 of
Figure 19) are comparable. Thus, the ITCAM search times
are comparable, as are the number of lookups served by the
ITCAMs. This, coupled with the fact that ITCAM searches
are slower, give PC-DUOS+W an immediate advantage since
it, unlike PC-TRIO, aborts an ITCAM search after finding
a match in the LTCAM. However, for these three tests, the
lookup times using PC-TRIO are quite reasonable (column 15
of Figure 19). For the other datasets PC-TRIO has fewer rules
in the ITCAM, which makes PC-TRIO lookups faster even
though it has to wait for ITCAM search to finish.

The average improvement in lookup time with PC-TRIO
and PC-DUOS+W (relative to PC-DUOS+) are 98% and 76%,
respectively. The average improvement in lookup time with
PC-TRIO (relative to PC-DUOS+W) is 68%. The maximum
improvement using PC-TRIO rather than PC-DUOS+ is ob-
served for acl1 (99.96%) and the minimum for acl2 (86.6%).
The maximum improvement using PC-DUOS+W rather then
PC-DUOS+ is observed for acl1 (99.98%) and the minimum
for fw1 (5%). The maximum improvement with PC-TRIO
rather than PC-DUOS+W is observed for tests fw1, fw4 and
ipc2 (99%) and the minimum for acl4 (47%).

4) Space requirements:We obtained SRAM area from
CACTI results and estimated TCAM area using the same
technique as used in PETCAM [22], where area of a single
cell is multiplied by the number of cells and then adjusted
for wiring overhead. Figure 21(d) gives the total area needed
for the TCAMs and associated SRAMs. The total area is
comparable for the three architectures. PC-TRIO and PC-
DUOS+W have lower TCAM area (due to fewer TCAM
entries) and higher SRAM area (due to wider SRAM words)
than PC-DUOS+.

D. Results from the second dataset with medium classifiers

Figure 20 gives the average TCAM power and lookup times
and their standard deviation for PC-DUOS+ and PC-TRIO.
From the last couple of columns in this figure, we observe
that power consumption in PC-TRIO is between 1/2.3 and
1/30 th of the power consumtion in PC-DUOS+. Lookup time
in PC-TRIO is 3.92 to 149 times faster compared to that in
PC-DUOS+. The least power saving was for the access control
list test, acl4, while the most savings were obtained for the
firewall test, fw2. Similarly, acl4 has the least improvement in
lookup time, whereas acl1 has the maximum improvement.

The performance of PC-DUOS+ or PC-TRIO ultimately
depends on how many rules are stored in the ITCAM, since
that’s the TCAM that cannot be optimized. For example, PC-
DUOS+ had about 6000 rules in the ITCAM for acl4, whereas
PC-TRIO had more than 9000. This is not surprising since
PC-DUOS+ and PC-TRIO use different algorithms to extract
independent rules. Despite having a larger ITCAM, PC-TRIO

shows improvement in power and lookup time because of
indexing.

The standard deviation for power and lookup time in both
PC-DUOS+ and PC-TRIO is small, which shows that the
individual power and timing numbers are very close to the
average.

E. Results from the third benchmark with small to medium
sized classifiers

The classifiers here are being reused from the work on PC-
DUOS+ [28] to check the update performance of PC-TRIO in
comparison with PC-DUOS+ and PC-DUOS+W.

1) Update Performance:Figure 22 shows the average num-
ber of TCAM writes used per update. PC-TRIO needs about 2
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Fig. 22. TCAM writes

TCAM writes on an average and is comparable to PC-DUOS+
for updates. PC-TRIO hence supports efficient and consistent
incremental updates. PC-DUOS+W needs more writes than
PC-TRIO to preserve the property that all rules stored in the
LTCAM have the highest priority compared to overlapping
rules.

F. Characteristics of the logic that processes wide SRAM
words

A circuit designed to process the contents of a wide LSRAM
word was synthesized using a 0.18µm library [32], [33] and it
was found found that the design successfully met the timing
constraints with a 500MHz clock. The results are presented

Process Time
(ns)

Throughput
(Msps)

Voltage
(V)

Power
(mW)

Gate Count

0.18µm 2 500 1.8 61.13 59724

Fig. 23. Timing and power results for additional hardware

in the Figure 23. The throughput is represented in terms of
million searches per second (Msps). An example of a TCAM
with a speed of 143MHz (effectively, 143 Msps) is found in
[34], using 0.13µm technology. It is expected that the delay
overhead and throughput of our design will improve on using
a 0.13µm library. Thus, our design can operate at the same
speed as that of a TCAM.

V. CONCLUSION

We presented an indexed TCAM architecture, PC-TRIO,
for packet classifiers. The methods to add indexing and wide
SRAMs were applied on PC-DUOS+ [28] to obtain another
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indexed TCAM architecture PC-DUOS+W. These two archi-
tectures were then compared with PC-DUOS+. Both PC-TRIO
and PC-DUOS+W may be updated incrementally. The average
improvement in TCAM power and lookup time using PC-
TRIO were 96% and 98%, respectively, while that using PC-
DUOS+W were 71% and 76%, respectively, relative to PC-
DUOS+.

PC-DUOS+W performed better on the ACL datasets com-
pared to the other types of classifiers. There was 86% reduc-
tion in TCAM power, and 98% reduction in lookup time with
PC-DUOS+W on the ACL datasets on an average compared to
PC-DUOS+. Even though PC-DUOS+W lookup performance
was better than that of PC-TRIO on three ACL tests, PC-
TRIO lookup performance was quite reasonable and in fact,
using PC-TRIO, there was a reduction in TCAM power by
94% and lookup time by 97% on an average for the ACL
tests, compared to PC-DUOS+.

So, we recommend PC-TRIO for packet classifiers.
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