Opportunities for Combinatorial Optimization
in Computational Biology

Harvey J. Greenberg
University of Colorado at Denver
Mathematics Department
PO Box 173364
Denver, CO 80217-3364
Harvey.Greenberg@cudenver.edu
http://www.cudenver.edu/~hgreenbe/

William E. Hart
Discrete Algorithms and Mathematics
Sandia National Laboratories, MS 1110
Albuquerque, NM 87185-1110
wehart@sandia.gov
http://www.cs.sandia.gov/~wehart /

Giuseppe Lancia
Departimento di Matematica e Informatica
Universita di Udine
Via delle Scienze 206, 33100 Udine, Italy
lancia@dimi.uniud.it
http:/ /www.dei.unipd.it/~lancia/

March 24, 2003 (revised)

Keywords: computational biology, combinatorial optimization, global opti-
mization, integer programming, minimum energy, bioinformatics, molec-
ular structure prediction, protein folding, protein alignment, rearrange-
ments, assembly, sequence alignment, SNP, sorting by reversals

Optimization in Computational Biology i

Abstract

This is a survey designed for mathematical programming people who do not
know molecular biology and want to learn the kinds of combinatorial opti-
mization problems that arise. After a brief introduction to the biology, we
present optimization models pertaining to sequencing, evolutionary explana-
tions, structure prediction and recognition. Additional biology is given in
the context of the problems, including some motivation for disease diagnosis
and drug discovery. Open problems are cited with an extensive bibliography,
and we offer a guide to getting started in this exciting frontier.

1 INTRODUCTION 1

1 Introduction

Although computational biology has been an increasing activity in computer
science for more than a decade, it has been only the past few years that
optimization models have been developed and analyzed by researchers whose
primary background is operations research (OR). The purpose of this survey
is to demonstrate the applicability of mathematical programming, from an
OR perspective, to these problems in molecular biology.

We begin with some vocabulary, but more, context-dependent biology will
be described in each section. This will not be enough biology to develop your
own research in this exciting frontier, but it is enough to understand many
of the problems and make an informed decision whether to pursue this field.
The appendix offers guidance to getting started.

One class of problems involves sequences from one of the following alphabets:

1. 4 nucleotides in DNA (1 letter code in bold capital):

{Adenine, Cytosine,Guanine,Thymine}

2. 4 nucleotides in RNA (1 letter code in bold capital):

{Adenine,Cytosine,Guanine,Uracil }

3. 20 amino acid residues in proteins:

Name Symbol | Name Symbol
Alanine A Leucine L
Arginine R Lysine K
Asparagine N Methionine M
Aspartic acid D Phenylalanine F
Cysteine C Proline P
Glutamine Q Serine S
Glutamic acid E Threonine T
Glycine G Tryptophan W
Histidine H Tryosine Y
Isoleucine I Valine \Y%

1 INTRODUCTION 2

From one sequence’s information, we would like to recognize or predict struc-
ture. From multiple sequences, we would like to compare structures and de-
termine if they are in the same “family.” It is believed, with some reservation,
that structure determines function, though this issue is still being explored.
If we can predict function from sequence, we can design and test drugs in
silico (in the computer), rather than in vivo (in an organism or living cell),
or in vitro (in a test tube).

The process by which this works is the central dogma of biology:

transcription

DNA RNA esfagion) oteins.

There is evidence that these processes usually obey the Thermodynamics
Hypothesis, which states that matter seeks a minimum free energy state.
That is one basis for using optimization to predict or analyze structures, but
it is not the only use. For example, using statistical methods one needs to
maximize a likelihood function or minimize an error function, each subject
to certain conditions.

In general, proteins with similar structures have similar functions, though
this is not always true. More recently, attention has been paid to interac-
tions of proteins, under the general topic of pathway inference [15, 36]. A
logical extension is more general interactions, modeled with gene networks
and protein complexes. One approach to this is systems biology [48], taking
into account some of the many biological complexities.

In the following sections we give mathematical programming models for a
broad spectrum of applications. We begin with sequence alignment, which
has been well surveyed by Blazewicz et al. [14]. More recent work in Sin-
gle Nucleotide Polymorphisms (SNPs) and haploids uses linear programming
and combinatorial optimization models. Then, we consider two problems in
rearranging or assembling DNA segments. We also consider the biology prob-
lem that is perhaps the most celebrated: protein folding. Here we describe
two fundamental applications in protein science: structure prediction and
structure comparison.

We present problem formulations for each of these applications and discuss
how solutions can be obtained. The problems are mostly NP-hard, so exact
algorithms are limited in the size of problem they can solve. This raises
challenging opportunities for finding approximation algorithms. Some meta-

2 SEQUENCE ALIGNMENT 3

heuristics have been applied, but there are opportunities to experiment fur-
ther.

Standard mathematical programming terminology is used, which can be
found in the Mathematical Programming Glossary [35].

2 Sequence Alignment

2.1 Concepts

One reason to do this is to infer properties of one sequence, given that we
know those properties of the other. For example, we might know where the
genes are in one DNA sequence, but not in the other. If the second sequence
is sufficiently similar, we can infer where its genes are. More generally, there
are segments of interest that we are trying to learn using information from
the first sequence. An implication of this is that we can discover binding
sites that would enable us to alter cellular processes — such as a drug for
changing a gene that produces a malfunctioning protein, or that produces
too much or too little of a protein.

The sequences could be from any of our four alphabets, but we shall focus
on the DNA alphabet, A= {A,C,G,T}. We let A" denote the set of non-null
sequences from A.

Given two sequences (s,t) of the same length, their Hamming distance,
Dy (s,t), is the number of positions in which they have different characters.

Example: sequence s: AAT AGCAA AGCACACA
sequence t: TAA ACATA ACACACTA
Dy(s,t) = 2 3 6

A similarity measure is a function that associates a numerical value with a
pair of sequences. Often this is normalized to be in [0, 1]. When comparing
two sequences, we seek to maximize their similarity. The notion of similarity
is dual to that of distance: greater similarity corresponds to less distance
between two sequences.

Similarity measures vary, but they are generally more flexible than distance
measures. For one thing, similarity does not require two sequences to have

2 SEQUENCE ALIGNMENT 4

the same length. Also, we allow operators such as shifting positions. For the
last example above, s and t differ by 6 characters. However, if we are allowed
to delete G from s and T from ¢, the two sequences become ACACACA. In this
sense, they are only 2 characters apart.

We consider a sequence alignment problem that uses three operations:

1. delete character from one sequence;
2. insert space into one sequence;
3. replace one character with another.

A biological meaning of deletion and insertion is illustrated in Figure 1. The
first assumption, shown in (a), is that one sequence descended from the other.
Another view is by homology — their similarity is based on having a common
ancestor in evolution, shown in (b).

A-CACACTA common ancestor
| 11 AGCACACTA
AGCACAC-A
| - T deleted Gddeted T delet
G inserted ACACACTA AGCACACA
(a) Sequence transformation (b) Homology

Figure 1: Insertion and Deletion to Align Sequences

In case (a), we do not want to assume which sequence was earlier, so we
tacitly assume time symmetry. This implies that insertion into one sequence
is a deletion in the other, depending upon which evolved into the other.
Computationally, we view it as a shift in one sequence or the other. In the
example all other characters matched, so there were no replacements.

2.2 Pairwise alignment

The problem of pairwise alignment is to find operations on s and ¢, where
the symbol “-” is added to the alphabet to represent deletion or insertion,

such that the Hamming distance is minimized. Let s* denote the subsequence

(s1,--.,8;), with s° défqﬁ (= null sequence). Define ¢/ similarly. Let c(a,b)

denote the cost of replacing a with b at some point in the sequence, where

2 SEQUENCE ALIGNMENT Y

a # b; let ¢(-, b) denote the cost of an insertion and let ¢(a, -) denote the cost
of a deletion. The unit cost model is where c(a, -) = ¢(-,b) = 1, independent
of the characters a and b.

Let D(s%,#/) denote the minimum total cost of applying these operations;
this is sometimes called the edit distance between sequences s’ and /. In
particular, the unit cost model is simply the Hamming distance, which is the
number of evolutionary events that occurred to transform one sequence into
the other, or to transform a common ancestor into each of them. Further, let
L, denote the length of string s. Then, D satisfies the following recursion:

(

D(Siil,tjfl) if s; = tj

c(siyt;) + D(s" 1, t771) (replacement) if

D(s",¥) =< min}{ ¢(-,t;) + D(s"1,) (insertion) anlé ¢
c(s;, =) + D(st, t771) (deletion) £ ¢

| Ly if s =¢; Ly if t/ = ¢.

Beginning with D(¢,$) = 0, this dynamic program (DP) can be solved in
O(L4L;) time.

A variety of cost functions have been considered by researchers. It is generally
held that four consecutive insertions are preferred to four non-consecutive
insertions. The rationale for this is that a consecutive sequence of insertions
(or deletions) could result from a single evolutionary event. A consecutive
sequence of insertions is called a gap, with length L equal to the number
of insertions after the first one. The cost to begin a gap is «, and the cost
of the gap is BL, where o > (. The affine gap model seeks to minimize
> (e + BL;), where the sum is over the gaps.

Example: ACGTCCACG ACGTCCACG
A-G-CCACG A---CCACG
Cost: 2a a+ 203

Gusfield’s system, XPARAL [42], provides a complete parametric analysis of
« and f.

2 SEQUENCE ALIGNMENT 6

2.3 Multiple sequence alignment (MSA)

Dynamic programming provides a fast algorithm to align two sequences for
a variety of distance measures. However, several approaches and alignment
measures have been proposed to align £ > 2 sequences. One measure of
distance is to sum the edit distances of the pairwise alignments. For example
consider the sequences

Example: s: AAGCTGCAAAGC
t: AAGCTG-AAAGC
u: A-GCT-CAA-GC
v: A-GCTTCAACCG

The total edit distance of these sequences is Dy (s,t)+ Dg(s,u) + Dy (s, v) +
Dy(t,u) + Dy (t,v) + Dy (u,v). Using the unit cost model, this becomes

1+34+5+4+6+4=23.
(Note: us = vo = - is considered a match.)

The complexity of a DP algorithm to minimize the total edit distance is
O(2*L, ...L;). A small problem has k¥ = 10 and L; = 100 for i = 1,... k.
The DP for the associated problem has complexity 782x 102, which is greater
than the postulated age of the universe in microseconds! Thus, DP is not
practical. Further, MSA is NP-hard |78|, so we should not expect any exact
algorithm to solve this problem efficiently.

2.3.1 Tree alignment

Another approach to MSA considers the sequences as leaves of a phylogenetic
tree — a graphical representation of the evolutionary history of species or
their parts. Solving MSA involves finding sequences for the internal nodes
so as to minimize the sum of the pairwise distances associated with edges.
The simplest of these is the Steiner tree, an example of which is shown in
Figure 2. Only one node (sp) is to be determined, and the sequence is to
minimize the sum, 2?21 d(so, S;)-

Jiang et al. [49] used Steiner tree alignment in an approximation algorithm
for an arbitrary tree, which guarantees being within twice the minimum total
distance. (See Gusfield [39] for more on string structures and algorithms.)

2 SEQUENCE ALIGNMENT 7

ACGICTAC ? ACGITA

ACCGTTAC

(a) Given tree

GACCGT-T
1
(~A-coTCTAC)2{-ACCGT-TAC)+ {-AC-GT-TA)
0
—ACCGT-TAC

(b) Solution

Figure 2: Steiner Tree Alignment Example: Total distance = 4

2.4 Open questions

A primary method for obtaining approximate solutions to MSA is the Carrillo-
Lipman [23, 30] use of projection, using dynamic programming in 2-dimensional
state spaces to infer bounds. Gusfield [38] gave a simple proof of an approxi-
mation algorithm, which guarantees being no worse than twice the alignment
score, using the sum of pairwise alignments (for any distance function). One
open question is whether there exists a better approximation algorithm.

Notredame and Higgins [64] presented a genetic algorithm for MSA| but little
has been done using metaheuristics since then. This is therefore another open
question: Can metaheuristics obtain reliably good solutions to large MSA
problems? By “reliably” and “good,” we mean with the kind of results we
experience in well established OR problems, like scheduling.

3 SNPS AND HAPLOIDS 8
3 SNPs and Haploids

3.1 Concepts

The process of passing from the sequence of nucleotides in a DNA molecule
to a string over the DNA alphabet is called sequencing. While in principle
this may seem a simple step, merely preliminary to all the computational
problems discussed here, the truth is that sequencing is a crucial phase, and
has not yet been fully resolved. A sequencer is a machine that is fed some
DNA and whose output is a string of As, Ts, Cs and Gs. To each letter,
the sequencer attaches a value (confidence level) which essentially represents
the probability that the letter has been correctly read (the “base has been
correctly called”).

The main problem with sequencing is that the current technology is not able
to sequence a long DNA molecule, which must therefore first be replicated
(cloned) into many copies, and then be broken, at random, into several pieces
(called fragments), of about 1,000 nucleotides each, which are individually
fed to a sequencer. The cloning phase is necessary so that the fragments
can have nonempty overlap. From the overlap of two fragments one may
infer a longer fragment, and so on, until the original DNA sequence has
been reconstructed. This is, in essence, the principle of shotgun sequencing,
in which the fragments are assembled back into the original sequence by
using sophisticated algorithms and powerful computers. Shotgun sequencing
allowed an early completion of the sequencing of the human genome |77, 32|.
The assembly (i.e., overlap and merge) phase is complicated by the fact that
in a genome there exist many regions with identical content (called repeats)
scattered all around and due to replicating events during evolution. The
repeats may fool the assembler into thinking that they are all copies of the
same region. The situation is complicated further from the fact that diploid
genomes are organized into pairs of chromosomes (a paternal and a maternal
copy), which may have identical or nearly identical content, a situation that
makes the assembly process even harder.

To partly overcome these difficulties, the fragments used in shotgun sequenc-
ing may have some extra information attached. In fact, they are obtained
by a process that generates pairs (called mate pairs) of fragments instead of
individual ones, with a fairly precise estimate of the distance between them.

3 SNPS AND HAPLOIDS 9

These pairs are guaranteed to come from the same copy of a chromosome
(either both from the maternal or both from the paternal copy), and may
help whenever one of them comes from a repeat region while the other does
not (and can be used as an anchor to place its troublesome mate).

3.1.1 Single Nucleotide Polymorphisms

The recent whole-genome sequencing efforts have confirmed that the genetic
makeup of humans (as well as other species) is remarkably well conserved,
and we all share some 99% identity at the DNA level. Hence, small regions
of differences must be responsible for our diversities. The smallest possible
region, consisting of a single nucleotide, is called Single Nucleotide Poly-
morphism, or SNP (pronounced “snip”). It is believed that SNPs are the
predominant form of human genetic variation, so their importance cannot be
overestimated for medical, drug-design, diagnostic, and forensic applications.

Broadly speaking, a polymorphism is a trait, common to everybody, whose
value can be different but drawn in a limited range of possibilities, called al-
leles (for a simple example, think of the blood group). A SNP is a particular
nucleotide site, placed in the middle of a DNA region that is otherwise iden-
tical in everybody, at which we observe a statistically significant variability.
In particular, a SNP is a polymorphism of only two alleles (out of the four
possible), for which the less frequent allele is found in the population with
some non-negligible frequency, usually taken to be 5%. Since DNA of diploid
organisms is organized in pairs of chromosomes, for each SNP one can either
be homozygous (same allele on both chromosomes) or heterozygous (different
alleles). The values of a set of SNPs on a particular chromosome copy define
a haplotype. The haplotyping problem is to determine a pair of haplotypes,
one for each copy of a given chromosome, that provides full information of
the SNP fingerprint for an individual at that chromosome. In Figure 3 we
give a simple example of a chromosome with three SNP sites. The individual
is heterozygous at SNPs 1 and 3 and homozygous at SNP 2. The haplotypes
are CCA and GCT.

In recent years, several optimization problems have been defined for SNP
data. In the remainder of this section, we address the haplotyping problem
for a single individual and for a set of individuals (a population). In the
first case, the input is inconsistent haplotype data. Note that, for diploid

3 SNPS AND HAPLOIDS 10

Chrom. ¢, paternal: ataggtccCtatttccaggcgcCgtatacttcgacggghActata
Chrom. ¢, maternal: ataggtccGtatttccaggcgcCgtatacttcgacgggTctata

Haplotype 1 — C C A
Haplotype 2 — G C T

Figure 3: A chromosome and the two haplotypes

organisms, the two copies of each chromosome are sequenced together, are
not identical, and, as previously observed, there are unavoidable sequencing
errors. In the latter case, the input is ambiguous genotype data, which
specifies only the multiplicity of each allele for each individual (i.e., it is
known if individual ¢ is homozygous or heterozygous at SNP j, for each 7
and j).

3.2 Haplotyping a single individual

As discussed in the introductory remarks, sequencing produces either indi-
vidual fragments or pairs of fragments (mate pairs) that both come from one
of the two copies of a chromosome. Even with the best possible technology,
sequencing errors are unavoidable: these consist of bases which have been
miscalled or skipped altogether. Further, contaminants can be present, i.e.,
DNA coming from another organism which was wrongly mixed with the one
that had to be sequenced. In this framework, the haplotyping problem for an
individual can be informally stated as follows:

Given inconsistent haplotype data coming from fragment sequencing,
find and correct the errors from the data to retrieve a consistent pair
of SNPs haplotypes.

Depending on what type of errors one is after, there can be many versions of
this problem. In 58], the minimum fragment removal (MFR) and minimum
SNP removal (MSR) problems are considered, which we briefly discuss here.

Given the fact that at each SNP only two alleles are possible, we can encode
them by using a binary alphabet. In the sequel, the two values that a SNP
can take are denoted by the letters A and B. A haplotype, i.e., a chromosome
content projected on a set of SNPs, is then simply a string over the alphabet

{a,B}.

3 SNPS AND HAPLOIDS 11

The basic framework for a single-individual haplotyping problem is as follows.
Thereisaset S = {1,...,n} of SNPs and aset F = {1,...,m} of fragments.
Each SNP is covered by some of the fragments, and can take the values A
or B. Hence, a SNP ¢ is defined by a pair of disjoint subsets of fragments,
A; and B;. Since there is a natural ordering of the SNPs, given by their
physical location on the chromosome, the data can be represented by an
m X n matrix over the alphabet {A,B, -}, called the SNP matriz, defined in
the obvious way. The symbol “-” is used to represent a SNP not covered by
a fragment.

A gapless fragment is one covering a set of consecutive SNPs (i.e., the As and
Bs appear consecutively in that row). We say that a fragment has k gaps
if it covers k£ + 1 blocks of consecutive SNPs. There can be gaps for two
reasons: (i) thresholding of low-quality reads (if the sequencer cannot call a
SNP A or B with enough confidence); (ii) mate-pairing in shotgun sequencing.
Particularly important is the case £ = 1, which is equivalent to two gapless
fragments coming from the same chromosome. This is the case of mate pairs,
used for shotgun sequencing.

SNP © @ G

123456 (a)
_1AB-AAB
T 2BA--B - D 93 (&)
%3—ABABA /
Es-AB-BA /N
5B-ABA -

(a)M (b) G}'(M) (C) GS(M)

Figure 4: Conflict Graphs for haplotype matrix, M

Two fragments ¢ and j are said to be in conflict if there exists a SNP k such
that (i € Ay, j € Bg) or (i € B, j € Ay). This means that either i
and j are not from the same chromosome copy, or there are errors in the
data. Given a SNP matrix M, the fragment conflict graph is the graph
Gr(M) = (F, Ex) with an edge for each pair of fragments in conflict. Two
SNPs, 7 and j, are said to be in conflict if 4;, B;, A;, B; are all nonempty
and there exist two fragments v and v such that the submatrix defined by
rows v and v and columns i and j has three symbols of one type (A or B)

3 SNPS AND HAPLOIDS 12

and one of the opposite (B or A respectively). It is easy to see that two
SNPs in conflict imply that there are 3 fragments forming an odd cycle in
the graph Gx(M). Hence the two SNPs cannot be both correct (assuming
the fragments are). Given a SNP matrix M, the SNP conflict graph is the
graph Gs(M) = (S, Es), with an edge for each pair of SNPs in conflict.

If G(M) is a bipartite graph, F can be segregated into two sets H; and Hy of
pairwise compatible fragments. From each set one can infer one haplotype by
fragment overlap (this process is known as phasing). Note that the overlap
may not be unique since there may be a subset of fragments that do not
overlap with any of the remaining fragments. We call a SNP matrix M
feasible if Gz(M) is bipartite. Note that a SNP matrix for error-free data
must be feasible. Hence, the optimization problems to be defined correct a
SNP matrix so that it becomes feasible.

The following optimization problems arose in the context of sequencing the
human genome and are studied in [58, 61]:

e MFR: Given a SNP matrix, remove the minimum number of fragments
(rows) so that the resulting matrix is feasible.

e MSR: Given a SNP matrix, remove the minimum number of SNPs
(columns) so that the resulting matrix is feasible.

The first problem is mainly suited for a situation in which, more than se-
quencing errors, one is worried about the presence of contaminants. The
second problem is more suited in the presence of sequencing errors only,
when all the fragments are to be retained. These problems were shown [58]
to be polynomial for gapless data (M is a gapless matrix if each row is a
gapless SNP). The main connection between them is given by the following
theorem.

Theorem 3.1 Let M be a gapless SNP matriz. Then, Gx(M) is a bipartite
graph if, and only if, Gs(M) is a stable set.

A stable set, also called an independent set, is a subset of nodes in a graph
such that no two nodes are adjacent (see [35] for details and related terms).
A feasible solution to the MSR problem needs to remove nodes from Gs(M)

3 SNPS AND HAPLOIDS 13

until a stable set remains. The optimal solution must leave the largest stable
set. This was shown to be polynomial in [58] by proving that Gg(M) is a
perfect graph for a gapless M (note that finding the largest stable set in a
perfect graph is a polynomial problem, [34, 37]). A simpler proof than that
in [58] is as follows. Let @ = (S, A) with {7, 5} € A if i is not in conflict with
j and i < j (as column indices in M). Since it can be shown that, for any
three SNPs u < v < w, if u is not in conflict with v and v is not in conflict
with w then also u is not in conflict with w, @) is a comparability graph, and
hence perfect [34]. But Gs(M) is the complement of @, so it is also perfect.

A later improvement in [71] extended these results to fragments with gaps of
bounded length, giving O(2%m?n + 23n3) dynamic programming algorithms
for MFR and O(mn?*?) for MSR for instances with gaps of total length .
The problems were shown to be NP-hard in general [58]. Since gaps generally
occur, there is a need for practical algorithms for the gapped versions of these
problems.

The following version of the haplotyping problem appears to be the most
appropriate to account for the fact that data come from sequencing, and
hence there are sequencing (read) errors to be corrected.

MLF (Minimum Letter Flips): Given a SNP matrix, flip the min-
imum number of letters (A into B and vice versa) so that the
resulting matrix is feasible.

This problem has not been studied so far, and hence it is open as far as its
complexity and practical algorithms. As in MSR, we suspect MLF has poly-
nomial complexity for gapless data and is NP-hard otherwise. Particularly
interesting is its weighted version, in which, for each entry, there is a weight
for its flipping, which should be proportional to (or at least correlated with)
the confidence level attached by the sequencer machine to the read. Another
variant contemplates a 3-way flip (i.e., one can flip from/to the gap as well).

Consider a square in M (i.e., 4 symbols at the corners of two rows and two
columns) with no gaps. Call such a square even if there is an even number
of As (and hence also Bs) and odd otherwise. If a solution does not use flips
to eliminate a whole column (by making it all A or all B), in any even (odd)
square an even (odd) number of letters must be flipped.

Hence, the following version of the set covering problem, called the parity set
covering problem, may be useful to solve the MLF problem: Given a family

3 SNPS AND HAPLOIDS 14

F = F U O of elements partitioned into even elements F and odd elements
O and a collection C of subsets of F', find a set C' C C such that each e € E
belongs to an even number of elements of C' (possibly none), each 0 € O
belongs to an odd number of elements of €', and |C’| is minimum. To our
knowledge, this version of the set covering problem has not been studied.

3.3 Haplotyping a population

Haplotype data are particularly sought after in the study of complex diseases
(those affected by more than one gene), because they contain complete in-
formation about which set of gene alleles are inherited together. However,
because polymorphism screens are conducted on large populations, in such
studies, it is not feasible to examine the two copies of each chromosome sep-
arately, and genotype, rather than haplotype, data are usually obtained. A
genotype describes the multiplicity of each SNP allele for the chromosome of
interest. At each SNP, three possibilities arise: either one is homozygous for
the allele A, or homozygous for the allele B, or heterozygous (a situation that
we shall denote with the symbol X). Hence a genotype is a string over the
alphabet {A,B, X}, where each position of the letter X is called an ambiguous
position. For a genotype g and SNP j, let g[j] denote the j-th symbol of g.
We say that a genotype g is resolved by the pair of haplotypes {h, ¢} if, for
each SNP 7, g[j] = A implies h[j] = g[j] = A, g[j] = B implies h[j] = ¢[j] = B,
and g[j] = X implies h[j] # q[j]. We then write ¢ = h @ g. A genotype is
called ambiguous if it has at least two ambiguous positions (a genotype with
at most one ambiguous positions can be resolved uniquely). A genotype g
is said to be compatible with a haplotype h if h agrees with g at all unam-
biguous positions. The following inference rule, given a genotype ¢g and a
compatible haplotype h, defines ¢ such that ¢ = h @ gq.

Inference Rule: Given a genotype g and a compatible haplotype h, obtain
a new haplotype ¢ by setting ¢[j] # h[j] at all ambiguous positions and
q[j] = h[j] at the remaining positions.

The haplotyping problem for a population is the following.

Given a set G of m genotypes over n SNPs, find a set H of hap-
lotypes such that each genotype is resolved by at least one pair
of haplotypes in H.

3 SNPS AND HAPLOIDS 15

To turn this problem into an optimization problem, one has to specify the
objective function. We describe here two possible objective functions. On
the study of the first formulation, although most natural, there has been
little progress thus far. In this formulation, one seeks to minimize |#| (see
[43] for an integer programming approach to this problem). Thinking of a
haplotype h as a set, which covers all genotypes that are compatible with
it, this is similar to the set covering problem, with the additional constraint
that each ambiguous genotype g must be covered by (at least) two sets h and
q for which g = h @ q.

The second formulation of the haplotyping problem has been studied by
Gusfield [40, 41], and is based on a greedy algorithm for haplotype inference,
also known as Clark’s rule.

3.3.1 Clark’s rule for haplotype inference

In its second formulation, the problem began as a feasibility problem. We
ask if the haplotypes in H can be obtained by successive applications of the
inference rule, starting from the set of haplotypes obtained by resolving the
unambiguous genotypes (of which it is assumed here there is always at least
one). This way of proceeding was proposed by the biologist Clark in 1990 [25]
with arguments from theoretical population genetics in support of its validity.
In essence, Clark’s rule is the following, nondeterministic, algorithm. Let G’
be the set of non-ambiguous genotypes, and let H be the set of haplotypes
obtained unambiguously from G'. Start with setting G «+— G \ G’ (notation:
G\ G is the set of elements in G minus those in G’, and this replaces G).
Then, repeat the following. Take a ¢ € G and a compatible h € H and apply
the inference rule, obtaining q. Set G «— G\ {g}, H < H U {q} and iterate.
When no such g and h exist, the algorithm will have succeeded if G = () and
will have failed otherwise.

For example, suppose G = {XAAA XXAA BBXX}. The algorithm starts by
setting # = {AAAA,BAAA} and G = {XXAA,BBXX}. The inference rule can be
used to resolve XXAA from AAAA, obtaining BBAA, which can, in turn, be used
to resolve BBXX, obtaining BBBB. However, one could have started by using
BAAA to resolve XXAA obtaining ABAA. At that point, there would be no way
to resolve BBXX. The non-determinism in the choice of the pair g, h to which
we apply the inference rule can be settled by fixing a deterministic rule based

3 SNPS AND HAPLOIDS 16

on the initial sorting of the data. Clark in [25] used a large (but tiny with
respect to the total number of possibilities) set of random initial sortings to
run the greedy algorithm on real and simulated data sets, and reported the
best solution overall. Many times the algorithm failed, but Clark’s algorithm
can be viewed as a heuristic for the optimization version of the problem: Find
the ordering of application of the inference rule that leaves the fewest number
of unresolved genotypes in the end. This problem was studied by Gusfield,
who proved it is NP-hard and APX-hard in [40]. (A problem is APX-hard
if there is a constant a > 1 such that the existence of an a—approximation
algorithm would imply P=NP. See [3] for a full description of the class APX).

As for practical algorithms, Gusfield [41] proposed an integer programming
approach for a graph-theoretic formulation of the problem. The problem
is first transformed (by an exponential-time reduction) into a problem on
a digraph G = (N, A), defined as follows. Let N = |J g N(g), where
N(g) := {(h,g) : his compatible with g}. N(g) is (isomorphic to) the set
of possible haplotypes obtainable by setting each ambiguous position of a
genotype to one of the 2 possible values. Let N' = Ugeg/ N(g) be (isomorphic

to) the subset of haplotypes unambigously determined from the set G’ of
unambiguous genotypes. For each pair v = (h,¢'), w = (q,9) in N, there
is an arc (v,w) € A if g is ambiguous, ¢’ # g and g = h @ ¢ (i.e., ¢ can
be inferred from ¢ via h). Then, any directed tree rooted at a node v € N’
specifies a feasible history of successive applications of the inference rule
starting at node v € N’. The problem can then be stated as: Find the
largest number of nodes in N — N’ that can be reached by a set of node—
disjoint directed trees, where each tree is rooted at a node in N’ and where
for every ambiguous genotype g, at most one node in N(g) is reached.

The above graph problem was shown to be NP-hard [40] (note that the
reduction of the haplotyping problem to this one is exponential time, and
hence it does not imply NP-hardness trivially). For its solution, Gusfield
proposed the following integer program.

3 SNPS AND HAPLOIDS 17

max Z Ty i, € {0,1} Vv EN

veEN\N'

vagl Vge G\ g

vEN(9)

Ty < Z Ty Vwe N\ N.

v:(v,w)EA

Gusfield focused on the LP relaxation because he observed, on real and sim-
ulated data, that its solution was almost always integer. He reduced the
LP dimension by defining variables for only those nodes that are reachable
from nodes in N'. In cases where the LP relaxation was not integer, Gusfield
manually set one or more fractional variables equal to zero. He also pointed
out the possibility of an integer solution containing directed cycles, but this
situation never occurred in his experiments.

A simple improvement of this model is immediate for researchers with mathe-
matical programming background. First, one could add subtour elimination-
type inequalities, which are easy to separate. Second, the model could be
solved within a standard branch-and-cut framework, of which Gusfield’s cur-
rent approach explores only the root node.

3.4 Using SNPs for disease diagnosis

We finish this section by pointing out a problem that arises in the context
of disease diagnosis (for instance, when trying to determine a gene mutation
responsible for a tumor).

Genotype data are collected from a population of m individuals, of which
some have a certain disease while the others do not. Hence the data comprise
a set G of m genotypes over n SNPs. Let G = Gp U Gy where Gp is the
subset of genotypes from people with the disease and Gy are the genotypes
from healthy people. Assuming the disease is due to “faulty” haplotypes,
the following new version of the haplotyping problem, called the disease
haplotyping problem, is to be considered. Resolve the ambiguous genotypes
into a set H of haplotypes for which there exists a subset Hp C H such

4 GENOME REARRANGEMENTS 18

that: (i) for all ¢ € Gp, there exist h,q € H such that ¢ = h & ¢ and
h € HpVq € Hp; (ii) for all g € Gy, there exist h,q € H such that g = hégq
and h ¢ Hp A g ¢ Hp. The objective calls for minimizing |#|. When there
is no feasible solution, the objective function should be changed into the
following: Find H and Hp C H for which the total number of genotypes not
satisfying (i) or (ii) above is minimum.

Last, we mention the minimum informative subset of SNPs, which is defined
as a subset S of SNPs, of minimum possible size, such that, projecting the
data over the SNPs in S, each genotype in G is different from each genotype
in Gy. In this case, it is possible that a diagnostic test for the disease could
be limited to checking the SNPs in S. In a slightly different version of this
problem, all the projected genotypes are required to be different from each
other. If there are no ambiguous genotypes in the data, then this version is
easily shown to be the NP-hard minimum test set problem (problem [SP96],
Garey and Johnson [31]) that is solvable by a reduction to the set covering
problem.

4 Genome Rearrangements

4.1 Introduction

With the large amount of genomic data that have become available in the
past decade, it is now possible to try and compare the genomes of different
species, in order to find their differences and similarities. This is a very
important problem because, when developing new drugs, we typically test
them on mice before humans. But how close is a mouse to a human? How
much evolution separates the two species?

Although there are very effective algorithms for comparing two DNA se-
quences, no such general algorithm exists for comparing two genomes. In
principle, one could consider a genome as a very long string (3 billion letters
in humans) and use the sequence alignment algorithm, but there are two
good reasons for not doing this. First, the time required would be very large,
even for the low-degree polynomial alignment algorithm. Second, and more
importantly, the model of sequence alignment is inappropriate for genome
comparisons, where differences should be measured not in terms of inser-

4 GENOME REARRANGEMENTS 19

tions/deletions/mutations of single nucleotides, but rather rearrangements
of long DNA regions, which occurred during evolution.

Consider the following example. Using sequence comparison, it is almost
impossible to find a similarity between the two sequences

81 = GGAATGGTTTCACTTCCC
S92 = GGCCCTTCACTTTGGTAA.

However, a single event explains how the second sequence is related to the
first: so can be obtained by reversing s, except for the first two letters. Re-
versing part of a sequence is one of the many evolutionary events possible,
by which long chunks of DNA are moved around in a genome. These events
happen mainly in the production of sperm and egg cells (but also for envi-
ronmental reasons), and have the effect of rearranging the genetic material
of parents in their offspring. When such mutations are not lethal, after a few
generations they can become stable in a population. In this case, we talk of
speciation, meaning that a new species was derived from another.

The main evolutionary events known are deletions, duplications, transposi-
tions, inversions, and translocations. These events affect a long fragment of
DNA on a chromosome. In a deletion the fragment is simply removed from
the chromosome. A duplication creates many copies of the fragment, and
inserts them in different positions, on the same chromosome. When an in-
version or a transposition occurs, the fragment is detached from its original
position and then is reinserted, on the same chromosome. In an inversion, it
is reinserted at the same place, but with opposite orientation than it origi-
nally had. In a transposition, it keeps the original orientation but ends up in
a different position. Finally, a translocation causes a pair of fragments to be
exchanged between the ends of two chromosomes. Figure 5 illustrates these
events, where each string represents a chromosome.

Since evolutionary events affect long DNA regions (several thousand bases),
the basic unit for comparison is not the nucleotide, but rather the gene.
In fact, the computational study of rearrangement problems started after
it was observed that several species share the same genes (i.e., the genes
have identical, or nearly identical, DNA sequences), however differently ar-
ranged. For example, most genes of the mitochondrial genome of Brassica

4 GENOME REARRANGEMENTS 20

CATTttataggttagCTTGTTAATCTC
{ (Deletion)
CATTCTTGTTAATCTC

TGTTAcgttcTTGTTAAGGTTAG
J (Duplication)
TGTTAcgttcTIGTcgttcTAAGGcgttcTTAG

ATTCTTgttttataGGCTAGATCCGCCATGGA
i} (Transposition)
ATTCTTGGCTAGATCCGCgttttataCATGGA

ATTCTTGTTttataggttagAATTTG
i} (Inversion)
ATTCTTGTTgattggatattAATTTG

CTGTGGATgcaggacat TCATTGAaataa
{ (Translocation)
CTGTGGATaataa TCATTGAgcaggacat

Figure 5: Five types of evolutionary events

oleracea (cabbage) are identical in Brassica campestris (turnip), but appear
in a completely different order. Much of the pioneering work in genome re-
arrangement problems is due to Sankoff and his colleagues (beginning with
[72]).

The general genome comparison problem is as follows:

Given two genomes (i.e., two sets of sequences of genes) find a
sequence of evolutionary events that, applied to the first genome,
turn it into the second.

Under a general parsimony principle, the solution sought is the one requiring
the minimum possible number of events. A weighted model, based on the
probability of each event, would be more appropriate, but these probabilities
are very hard to determine. It is an open problem in genome comparison to
develop sound mathematical models and algorithms for the general version
of the problem. In fact, in the past decade, people have concentrated on

4 GENOME REARRANGEMENTS 21

evolution by means of some specific event alone, and have shown that these
special cases can be already very hard to solve |7, 8, 20, 22, 52, 53|.

The two events that have received more attention are inversions and transpo-
sitions, so we will focus on them for the remainder of this section. Inversions
are considered the predominant of all types of rearrangements. For histor-
ical reasons, they have become known as reversals in the computer science
community. Since reversals and transpositions are single-chromosome rear-
rangements, what we call genome, from here on, has to be understood as
a particular chromosome of a given genome. Two genomes are compared
by looking at their common genes. After numbering each of n common
genes with a unique label in {1,...,n}, each genome is a permutation of
the elements {1,...,n}. Let # = (m ... m,) and 0 = (07 ... 0,) be
two genomes. By possibly relabeling the genes, we can always assume that
oc=a:= (12 ... n), the identity permutation. Hence, the problem becomes
turning 7 into .

A reversal is a permutation p;;, with 1 <4 < j < n, defined as

pj=0...i—1 |jj—1 ... i+1li| j+1...n)
reversed

Note that by applying (multiplying) p;; to a permutation 7, one obtains
(my ... Wi—1, W Wj—1 ... Wi, Tjp1 -.. Tp), i.e., the order of the elements
T, ..., m; has been reversed. Let R = {p;; : 1 <i < j <n}. Risaset of
generators of Sy, the set of the n! permutations of {1,...,n}. That is, each
permutation 7 can be expressed (non-uniquely) as a product ap'p?®...p"
with p* € R fori =1...D. The minimum value D such that ap'p?...p” ==
is called the reversal distance of 7, and denoted by dg(w). Sorting by reversals
(SBR) is the problem of finding dz(7) and a sequence p'p?...p%"R(™ that

satisfies ap'p? ... pP = 7.

The above formulation does not consider the fact that a reversal not only
changes the order of some genes, but it causes the nucleotide sequence of each
reversed gene to be complemented. To account for this situation, a genome
can be represented by a signed permutation, i.e., a permutation in which
each element is signed either '+’ or '—’. For a signed permutation, the effect
of a reversal is not only to flip the order of some consecutive elements, but
also to complement their sign. For instance, the reversal p,4 applied to the
signed permutation (+1 —4 +3 —5 4+ 2) yields the signed permutation

4 GENOME REARRANGEMENTS 22

(+1 +5 —3 +4 +2). Signed sorting by reversals (SSBR) determines
the minimum number of reversals that turn a signed permutation 7 into
(+1 +2 ... +n). Note that, for signed permutations, reversals of a single
element are allowed.

The problem of signs does not arise in transpositions, where the direction of
each gene is always preserved. A transposition is a permutation defined by
Gk, withl <k <i<j<mnasmj=0...k=1,47i+1...5, k...i —
1,j+1...n). Applying 7, to 7 has the effect of moving the strip of el-
ements ;... 7; from their position to the position immediately before .
Let T be the set of all possible transpositions. 7 is a set of generators of
Sy, so that each permutation 7 can be expressed (non uniquely) as a product
artt? ... 7P with 7 € T for i = 1...D. The minimum value D such that
aptp?...pP = 7 is called the transposition distance of 7, and denoted by
dr(m). Sorting by transpositions (SBT) is the problem of finding dr(7) and

a sequence 7'72 ... 797(") that satisfies ap'p?...p" = 7.

4.2 Sorting by Reversals

The study of sorting by reversals began with its unsigned version. The first
exact branch-and-bound method, only suitable for small problems (n < 30),
is due to Kececioglu and Sankoff [53]. A major step towards the practical
solution of the problem was made by Bafna and Pevzner |7], who, building on
the previous results by Kececioglu and Sankoff, found a nice combinatorial
characterization of 7 in terms of its breakpoints. A breakpoint is given by a
pair of adjacent elements in 7 that are not adjacent in o« — that is, there is
a breakpoint at position 4, if |m; — m;_q1| > 1.

The analysis of breakpoints provides the key to effectively bounding dg (7).
Let b(7) denote the number of breakpoints. Then, a trivial bound is dg(7) >
[b(m)/2], since a reversal can remove at most two breakpoints, and « has
no breakpoints. However, Bafna and Pevzner showed how to obtain a sig-
nificantly better bound from the breakpoint graph G(7). G(m) has a node
for each element of 7 and edges of two colors, say red and blue. Red edges
connect elements m; and m;_ for each position ¢ at which there is a break-
point, and blue edges connect h and k whenever |h — k| = 1, but h and &
are not adjacent in 7. G(m) can be decomposed into a set of edge disjoint
color—alternating cycles. Let ¢(m) be the maximum number of edge disjoint

4 GENOME REARRANGEMENTS 23

alternating cycles in G(m). Bafna and Pevzner proved the following theorem:
For every permutation 7, dg(7) > b(7) — c¢(m).

The lower bound b(7) — ¢(7) turns out to be very tight, as observed first ex-
perimentally by various authors and then proved to be almost always the case
by Caprara [19]|, who showed that determining c¢(7) is essentially the same
problem as determining dg(m) [20]. Moreover, Caprara proved both prob-
lems to be NP-hard, thus settling a long standing open question about the
complexity of unsigned SBR. SBR was later shown by Berman and Karpin-
ski [13] to be APX-hard as well. The best approximation algorithm known
is by Berman et al. [12] and achieves a ratio of 1.375.

The NP-hardness of computing ¢(7) may seem like a major drawback against
the use of the lower bound b(7) — ¢(m) for the practical solution of SBR.
However, this is not the case. In fact there is an effective Integer Linear
Programming (ILP) formulation to find ¢(7) and for any upper bound ¢'(7)
to ¢(m), also the value b(m) — () is a lower bound to dg(7). Based on the
aforementioned ILP formulation, a good upper bound to c¢(7) is obtained
by LP relaxation. The following is an effective Integer Linear Programming
(ILP) formulation to find ¢(7).

Let C denote the set of all the alternating cycles of G(7) = (V, E), and for
each C € C define a binary variable z. The following is the ILP formulation
of the maximum cycle decomposition:

max{Zxc:Zxcgl, Vee E, z¢ € {0,1}, VCEC}. (1)

cecC C>e

A good upper bound to ¢(7) can be obtained by LP relaxation. Based on
these ideas, Caprara et al. [22] developed a branch-and-price algorithm whose
latest version can routinely solve, in a matter of seconds, instances with
n = 200 elements, a large enough size for all real-life instances available so far.
Note that no effective ILP formulation has ever been found for modeling SBR
directly. Finding such a formulation constitutes an interesting theoretical
problem.

The LP relaxation of (1) has an exponential number of variables, but it can
be solved in polynomial time by column-generation techniques. Solutions of
some non-bipartite, perfect matching problems are used to price the variables.

4 GENOME REARRANGEMENTS 24

Today, SBR is regarded as practically solved, being one of the few NP-hard
problems for which a (worst-case) exponential algorithm (namely, branch-
and-price) is fairly good on most instances. The situation is even better as far
as the optimization of SSBR is concerned. In fact, with a deep combinatorial
analysis of the cycle decomposition problem for the permutation graph of a
signed 7, SSBR was shown to be polynomial by Hannenhalli and Pevzner [44].
This result came as a surprise, at a time when unsigned SBR, was still an
open problem, and the two versions of the problem were expected to have the
same complexity. The original O(n?) algorithm of Hannenhalli and Pevzner
for SSBR was improved over the years to an O(n?) algorithm for finding the
optimal solution [50] and an O(n) algorithm [6] for finding the signed reversal
distance (but not a sequence of reversals that achieve this distance).

The other evolutionary events in Figure 5 do not have such a rich theory. The
analogous problems for sorting by transpositions or translocations are par-
ticularly interesting, and there are no results comparable to the algorithmic
framework built on breakpoint analysis. Thus, this provides another oppor-
tunity to advance this field. Once we can deal with each of the evolutionary
events individually, we must then consider combinations.

While sorting by reversals is well developed, there is an open problem of
another kind, which concerns reversals by a stochastic process. That is the
subject of the next section.

4.3 Expected reversal distance

Since the optimization of the reversal distance has become a well-understood
problem, research has shifted to the study of the expected reversal distance,
a problem for which there has been no similar success. In a probabilistic
model of evolution, one can assume that each reversal is a random event,
and evolution follows a random walk in a graph having a node for each
possible genome. Define the reversal graph as the graph Gp = (S,, E) in
which there is an edge between each pair of permutations 7, o such that o
can be obtained from 7 by a reversal. SBR corresponds to the shortest path
problem in Gg. If 7 and p represent two genomes, dr(mp~') gives a lower
bound to the number of evolutionary events that occurred in the evolution
of m and p from a common ancestor.

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 25

However, the actual path followed by evolution does not necessarily corre-
spond to the shortest path, and a more reliable scenario can be based on a
probabilistic analysis. Assume each reversal can occur with the same prob-
ability for a permutation. Starting at the identity permutation (denoted «),
consider a random walk in G’ in which, at each step, an edge is chosen with
uniform probability among all edges incident on the current node. Let Y}
be a random variable representing the reversal distance of the permutation
obtained after k steps of the random walk. Perhaps the most significant open
problem for sorting by reversals, both signed and unsigned, is to determine
the expected value E[Y%], or tight lower and upper bounds.

The Cayley graph [4] of a group G with respect to a set T of generators is a
graph with vertex set G and edges {g,9r} (¢ € G,r € T). Since the set of all
reversals is a set of generators of S, the graph G is a (non-bipartite) Cayley
graph. For this graph, the probability of ending at node v after k steps of
a random walk approaches the random distribution, as k increases. In [21],
it is shown that O((nlogn)°®) random reversals are enough to end at a
practically random permutation. Since Bafna and Pevzner [7] have shown
that for a random permutation 7, E[dg(m)] > (1—4/logn)n, the same bound
holds for E[Y], with k large enough. However, genomic permutations should
not be random, and hence it is important to derive a similar bound for E[Yj]
for small values of k. A first step in this direction was achieved by considering
another random variable, Xy, the number of breakpoints in an unsigned
permutation after £ uniform random reversals, that is correlated with Y.

Caprara and Lancia [21] proved that E[X;] = (n—1) (1 - (Z—j’)k) and have
shown how this value can be used to derive a better (i.e., closer to the true
sequence of events) solution than the optimal SBR solution, when dr < n/2.
These results were generalized to a whole class of genomic distances, for
signed and unsigned permutations and circular genomes as well, in Wang

and Warnow [79].
5 Protein Structure Prediction and Recogni-
tion

Proteins are complex biological macromolecules that are composed of a se-
quence of amino acids, which is encoded by a gene in a genome. Proteins

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 26

are key elements of many cellular functions. Fibrous proteins contribute to
hair, skin, bone, and other fibrous parts. Membrane proteins stay in a cell’s
membrane, where they mediate the exchange of molecules and information
across cellular boundaries. Water-soluble globular proteins serve as enzymes
that mediate and catalyze most of the biochemical reactions that occur in
cells.

There are 20 different amino acids specified in the genetic code. Amino acids
are joined end-to-end during protein synthesis by the formation of peptide
bonds (see Figure 6). The sequence of peptide bonds forms a “main chain”
or “backbone” for the protein, off of which project the various side chains.

residue (or side chain)

| 2
o) o)
C C Carboxyl
Amin — | T~ | — | ™~ | d Y
O H.N c H_N c o
+
(+) 5 /2 5
H
O water goes avay
R1 R2
| |
o)
C c
H N/‘ | \C‘
3 H H |
o)

peptide bond

Figure 6: The peptide bond joining two amino acids when synthesizing a
protein.

The functional properties of proteins depend upon their three-dimensional
structures. Understanding and predicting these structures has proven quite
daunting, despite the fact that the structure of thousands of proteins have
been determined [11]. Unlike the structure of other biological macromolecules
(e.g., DNA), proteins have complex, irregular structures. Our focus in the
this section is on globular proteins, which exhibit a specific native state.

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 27

The sequence of residues in a protein is called its primary structure. A va-
riety of structural motifs have been identified for proteins. Proteins exhibit
a variety of secondary structure motifs that reflect common structural ele-
ments in a local region of the polypeptide chain: «-helices, S-strands, and
loops. Groups of secondary structures usually combine to form compact glob-
ular structures, which represent the three-dimensional tertiary structure of
an entire protein. The central dogma of protein science is that the primary
structure determines the tertiary structure. Although this is not necessarily
true in all cases (e.g., some proteins require chaperone proteins to facilitate
their folding process), this dogma is tacitly assumed for most of the computa-
tional techniques used for predicting and comparing the structure of globular
proteins.

In the following sections we consider problems related to the prediction and
comparison of protein structures. Knowing the structure of a protein pro-
vides a basis for identifying the protein’s function, and protein structures
are necessary for many computational drug docking techniques. (Although
it is an important research topic, we shall not explore drug docking prob-
lems here, except to say that it is the binding of a small molecule, called a
ligand, like a drug, to some site on a protein. There are many interesting
open optimization problems, such as the location of the docking site, which
are described in [65].) Because of its importance, a variety of techniques
have been developed to predict protein structure, but only a few are based
on mathematical programming. We summarize efforts to characterize the
computational complexity of protein structure prediction, and we describe
one approach in detail.

Protein alignment techniques can be used to compare and predict protein
structures. We describe recent work on protein alignment with contact maps,
which can be applied to assess the accuracy of protein structure prediction
methods (given known protein structures). For a sense of scale, the number
of amino acid residues in a protein ranges from about 50 to 2500. As a
practical matter, instances in the range 100-500 are interesting enough to be
studied because we do not understand the function of many of those proteins.

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 28

5.1 Protein Structure Prediction

One approach to protein structure prediction is to determine the position
of a protein’s atoms so as to minimize the total free energy [17, 62]. In
practice, accurate energy function calculations cannot be used for protein
structure prediction, even for proteins with as few as 50 residues, so approxi-
mate models are commonly used. Even these simplified models are complex,
and they frequently have many local minima. Here we consider a lattice
model of protein folding based on the following biological simplification due
to Dill [29] (also see [60, 28]). Amino acids can be hydrophobic, which means
that they do not do well in water, or hydrophilic, which means that they do.
Using this simplification, optimization models have been developed during
the past decade that seek to maximize interactions between adjacent pairs
hydrophobic side chains. The adjacency is defined on a lattice of points that
can be regarded here as a discrete approximation, or grid, in space. The
rationale for this objective is that hydrophobic interactions contribute a sig-
nificant portion of the total energy function. Roughly, this objective favors
conformations that have the hydrophobic amino acid residues clustered on
the inside, covered by the hydrophilic ones.

Lattice models of protein folding have provided valuable insights into the
general complexity of protein structure prediction problems. For example,
protein structure prediction has been shown to be NP-hard for a variety
of lattice models |2, 10, 27, 46|. This lends credibility to the general as-
sumption that protein structure prediction is an intractable problem. These
results are complemented by performance-guaranteed approximation algo-
rithms that run in linear time. These results show that near-optimal protein
structures can be quickly constructed, and they can be generalized to simple
off-lattice protein models [45].

Most of the complexity analysis and algorithm design has focused on vari-
ations of Dill’s hydrophobic-hydrophilic model. This is generally called the
HP model, where P is used to denote hydrophilic because those amino acids
are also polar. The HP model is one of the most studied simple (globular)
protein models. From a computational view, we are reducing the alphabet
from 20 characters to two, where our input sequences are from {H, P}*. The
recent results of Andorf et al. [1] explore the range of alphabet size, from 2
to 20, taking other properties of amino acids into consideration.

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 29

In addition to providing insight into the theoretical computational complex-
ity of protein structure prediction, the HP model has also been used to assess
and evaluate many different optimization techniques applied to this problem.
A wide range of heuristics have been applied to find optimal HP structures,
especially evolutionary algorithms [54, 55, 56, 66, 69, 70, 74, 75, 76]. Ad-
ditionally, exact methods for protein structure prediction in the HP model
have been developed using constrained enumeration techniques |81, 82| and
logic programming [5]. Solving HP problems with either heuristic or exact
methods has proven quite challenging, and none of these methods is able to
robustly scale to sequences of 100’s of amino acids.

Thus, there appears to be an opportunity for mathematical programming
techniques to obtain deeper insight into these problems. These insights can
be biological, or they can be exploited algorithmically to solve practical size
problems. We begin with a simple ILP model.

A residue’s neighbor (successor or predecessor in the sequence) must be as-
signed to a neighboring grid point (exactly one unit away). Mathematically,
if the assigned coordinates of two neighbors of the sequence are (z;, y;, 2;)
and (Z;41, Yit1, Zit1), this must satisfy:

Ti = Tig1| + [Yi — Yira| + 20 — 2| = 1.

The 2D counterpart is easier to visualize. Figure 7(a) shows a grid for 9
acids and the backbone of a protein. The open circles are hydrophilic acids,
and the filled circles are hydrophobic acids. In this state, the number of
hydrophobic contacts is 3: (1,2), (5,6) and (6,7) are hydrophobic neighbors.
Figure 7(b) shows a fold, adding 2 to its number of hydrophobic contacts,
shown by the dotted line connecting them. (The hydrophobic contacts along
the background are often omitted in HP models, because any conformation
always includes these contacts. However, we include them here to simplify
the statement of our ILP model.)

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 30

y y
e A A S 8
ot s | ke g™
4 OO) o OO T
T 3] S
01‘2‘3;4‘11%&‘37‘;3x 0 1 2 3 4 5 6 7 8X
(a) Backbone (b) Fold with 5 hydrophobic contacts

Figure 7: Protein in a 9 x 9 Lattice

The amino acid residue sequence is denoted < aq,...,a, >, and the set of
lattice points is £ = {1,2,...,n%}, such that the coordinates are of the form:

—1
yp:{p Janda:p:p—l—nyp forpe L.
n

Define the neighborhood of a point by
N(p)={a €L :|zp — zq| + |yp — yol =1}

Let vy, be a binary decision variable with the following meaning:

e — 1 if acid a; is assigned to point p;
] 0 otherwise.

The following constraints give us the correspondence we seek.

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 31

(1) Every residue must be assigned to a point:

Zvip =1 fori=1,...,n.
pell

(2) Each point cannot be assigned more than one residue:

n
Zvip < 1 forpelL.
i=1

(3) Sequence order must be preserved:

Z Vi+l,q > Vip fori=1,....n—1, pe L
9eN (v)

Z Vi > Vp fori=2,...,mn, peL.
9eN (v)

Now we need to count the number of hydrophobic contacts for any assign-
ment, v, with binary hydrophobic contact variables. Define

T { 1 if there are hydrophobic residues assigned to p and g;
pg =

0 otherwise,

for (p,q) € D o {(p,q) : g € N(p)} (= domain of h).

The following constraints provide part of the assurance that h is determined
appropriately.

(4) hy < Z vip and hy, < Z viq for (p,q) € D,
= =

where H is the set of indices of hydrophobic acids. Each sum on the right is
0 or 1 for any assignment, v. If either is 0, that forces h,, = 0, so we do not
allow this to “score”. That is what we want: do not score any hydrophobic
contact if the neighboring points are not both hydrophobic. If both right-hand
sides are 1, that means v;, = 1 for some residue, ¢, that is hydrophobic; and,
vgq = 1 for some other residue, k, that is also hydrophobic. That allows
hpy = 1.

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 32

The complete ILP model is given by the following:

max Z hpg + (1)—(4) and hyq, vy € {0,1} Vi, p, q.
(p.0)eD

The maximization takes care of determining the hydrophobic contact scoring
variables (h) correctly. If the assignment allows h,, = 1, that is the value it
will be in an optimal solution. Although this model is correct, we consider
several ways that it can be improved.

We must eliminate translation, rotation and reflection symmetries because
branch-and-bound does not understand and exploit the geometry of this
problem. It will see a symmetric solution as an alternative optimum, even
though it is the same fold. This means that the search tree will be huge
because it will include paths to the symmetric solutions that it cannot close.
Fortunately, there is a simple fix to avoid translation symmetries: assign
some acid, say m, to some point, say p,. (We have found it effective to fix
the middle acid to the middle of the lattice.) To do this, we simply add the
constraint: vy, = 1.

The complete lattice is now reduced by half because not every point is reach-
able. For example, a,,+; must be at one of the four points neighboring p,,.
Letting L denote the set of reachable points, this reduces the neighborhood
to N(p) = {q € Lr :|xp — 24| + |yp — yg| < 1}. This carries to the domain
of h: D = {(p,q) : p € Lr,q € N(p)}. We point this out because other
domain reductions are possible, and we continue to use N (p) and D with the
understanding that they are the reduced sets.

We now consider the effect of rotation and reflection symmetries. Note that
we can rotate any fold about the middle to put a; into some quadrant, say
quadrant 3. Then, we can reflect this rotated fold about the line y = «
to put a; into the half-quadrant. The following constraint eliminates these

symmetries:
Z Vip = 1.

P: Tp < Tpy,
Yo < Ypum
Yp 2 Tp
This region is illustrated in Figure 8. Not all symmetries can be eliminated
at the outset, and Backofen [5] has considered rules that deal with new
symmetries that arise during branch-and-bound.

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 33

y axis of reflection: y=x
X< 4<

8 - e [

L e R A R s o s

R e 74

5 -) A
Cvx |

4 = 1§

Vs

3 A Tttt T

: T B

i

0 1 2 3 4 5 6 7 8X

Figure 8: Region restricting a; to eliminate some symmetric folds

We now consider a different formulation by adding new variables:

1 if vy =, =1;
Eipq = v . i
0 otherwise

fori=1,...,n—1, (p,q) € D. In words, F describes a pair of assignments:
its value is 1 if, and only if, a; is assigned to point p and its successor, a;,1, is
assigned to the neighboring point, q. A potential improvement comes from
reformulating the sequence-preserving constraints.

It is useful to think of the lattice as a network whose nodes are the reachable
points and whose edges are links with neighbors. Then, we can think of E;,,
as flow from ¢ to i + 1 across the edge (p, q), as depicted in Figure 9. We can
relate the assignment variables to these flow variables as follows:

outflow: v, = Z Eipq fori=1,....n—1, p€e Lg
9N ()
inflow: wv;, = Z Ei 14 fori=2...,n peLlp
aeN (v)
backflow: v, > Ejpy+ Ei_14, fori=2,...,n, (p,q) € D.

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 34

Figure 9: Flow variables (Ej,,) added to model

The outflow constraint says that if a; is assigned to point p (v, = 1), its
successor must be assigned to some neighbor. Conversely, if a; is not as-
signed to point p (v;, = 0), all of the associated flow variables must be zero.
The inflow constraint says that if a; is assigned to point p, its predecessor
(a;—1) must be assigned to some reachable neighbor. Conversely, if a; is not
assigned to point p, all of the associated flow variables must be zero. The
backflow constraint says that if a; is assigned to point p, either its successor
or predecessor is assigned to a neighbor (¢), but not both (to the same neigh-
bor). Conversely, if a; is not assigned to point p, the two flow variables are
forced to be zero (but this is not an additional constraint since the outflow
and inflow constraints force this).

Theorem 5.1 If (v, E) satisfies the flow constraints, v satisfies the sequence
order preserving constraints.

Proof: The “sequence order preserving constraints” are (3), p. 31. The
backflow and outflow constraints yield:

Z Vigl,g = Z (Ez'+1qp + Eipq) > Z Eipg = vip
aeN (v) 9N (n) aeN (v)

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 35

fori=1,...,n — 1. Similarly, the backflow and inflow constraints yield
Z Vi—1,q = Z (Ei—l,qp + Ei—2,pq) 2 Z Ei 1,40 = Vip
9N () 9N () 9N ()
fort=2,...,n. [|

The flow constraints ensure that the backbone sequence is preserved, so we
drop the original order-preserving constraints (3).

The complete, revised formulation is

IP: max Y Y Byt Ui, By € {0,1},0 < By < 1
veLr e N)

Assignment: Zv,-p =1, Zvip <1
p %

Flow: Vip = Z Eipq = Z Ei—l,qp7 Vip = Eipq + Ei—l,qp;
geN () eeN)

Scoring limits: hy, < Z Vip, Ppg < Z Vig;
icH icH
Restrict a;: Zvlp =1 (Q is & quadrant 3);
peQ

Fix middle: vy, = 1.

(Domain restrictions and boundary conditions are as in the original IP.)

Theorem 5.1 shows that every 0-1 solution to IP’ corresponds to a 0-1 solu-
tion to IP. It is not difficult to prove the converse, so IP and IP’ have the
same space of 0-1 assignments and yield the same objective value over those
assignments. Theorem 5.1 suggests that IP’ is sharper than IP, but we think
that the LP relaxation of IP’ has many more extreme points, so whether
this flow formulation is computationally better than the simpler model (IP)
requires further study.

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 36

5.2 Contact Map Alignment

One approach to understanding a new protein’s function is to see if it is
similar to some known protein. One measure of similarity, which is described
here, uses knowledge of the structure of both proteins (e.g., the structures of
known native states).

The contact map of a protein is a graph with a node for each amino acid
residue and an edge for each pair of non-adjacent residues whose distance is
within a given threshold. The distance between two residues can be defined,
for example, as the smallest Euclidean distance between any pair of atoms in
the residues. Given contact maps for two proteins, Gy = [Vi, Fy| and G5 =
[Va, E5], a similarity measure is the relative size of the maximal subgraphs
that are isomorphic while preserving their backbone sequences [33].

We illustrate this similarity metric in Figure 10. The first protein has 8
residues and the second protein has 10. The alignment shows the residues
selected in the subgraphs (nodes 1,2,4,5,6,7,8 from V; and nodes 1,2,3,5,7,9,10
from V3). The linear order is preserved by associating 1-1, 2-2, 4-3, 5-5, 6-7,
7-9, 8-10, and the dark edges illustrate the isomorphic edges in each contact
map. These edges satisfy the condition that their endpoints are associated.
For example, the edge (1,4) in E; corresponds to edge (1,3) in E; because of
the node associations 1-1 and 4-3.

Figure 10: Example contact map alignment with isomorphic subgraphs with
5 edges [59]

Now let us formulate the contact map optimization (CMO) problem as a 0-1

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 37

IP. We define z;; = 1 iff 4 € 1} is associated with j € V5, and we define
Yk = 1 iff edges (i,k) € E; and (j,1) € E, are selected. The objective
of CMO is to maximize Y y(ir)i,)-

The selected edges must have their endpoints associated, so
Yirgny =1 = iy =zn =1,
which we express with the inequalities:

Yo < Zij and Yip iy < ow for (4,k) € Ey, (4,1) € E,.

The z;; associations must be unique, so

szjgl, VI]E‘/Q and injgl, Vi € V.

% JEVS

These are the usual assignment limits: At most one node in one graph can
be associated with a node in the other graph. Finally, at most one of the two
associations that cross is allowed, so we have

g <1for 1<i<k<[Vijand 1<1<j<[Val
Here is the complete formulation:

max Z Yik)Gd) © Tij> YakGr € 10,1},
(iak) € El
(4,1) € Es

Yk Gl < Tij and Yk < zw for (1, k) € By, (5,1) € Ey

injglforje%, Zl‘ijglfOI'ievl,

1€V JEV2
Tijtrg<lforl<i<k<|ViJand 1<I<j<|V.

This formulation can be decomposed into x and y variables, from which we
derive valid inequalities on the x problem. Define

Y(.Z') = {(Za]a kal) : (Za k) € Ela (]a Z) € E2a and Tij = Tl = 1}

5 PROTEIN STRUCTURE PREDICTION AND RECOGNITION 38

Then, for any (fixed) z, the optimal choice of y is given by:

% 1 it (i, 5,k 1) € Y(x);
y(i,’“)(j’l)(x) - { 0 otherwise.

Thus, we can reformulate the CMO problem as

max Y (z)] : zi; € {0, 1}72%‘]' <1, in_j <1, zij+on <1
i J

The constraints in this formulation define an independent set in a related
graph.

This observation can be used to strengthen the IP for CMO. In particular, if
we have three or more pairwise crossing associations, their exclusion inequal-
ities can be strengthened. For example, the associations shown in Figure 11
give the inequalities

13+ T2 <1, 13+ 231 < 1, o + 1731 < 1,
However, these can be replaced by the stronger inequality:
T13 + T2 + 231 < 1.

Both systems have the same 0-1 solutions: at most one of the three asso-

ciations can be made, at the exclusion of the other two. However, the one

inequality is stronger because it has a smaller set of fractional solutions. In
111

particular, the first system admits (3,3,3), which violates the second system.

L. @ @
o ® @

Figure 11: Three Associations that are Pairwise Crossings

The linear programming relaxation (LPR) of this problem has some sur-
prises. Figure 12 shows two contact maps with six residues. The graphs are
isomorphic, so the optimal alignment selects all eight pairs of edges. One
might think the LPR would be integer-valued, but the opposite is true.

6 EPILOGUE 39

Figure 12: Isomorphic Contact Maps

The fractional solution to this example has z;; = % for all values, except
Tog = Tgg = % These assignments give nearly the least information possible
by having the fractional values be nearly equal. The crossing constraints are
satisfied because they admit any pair of assignments whose sum does not
exceed 1; in fact, none of the crossing constraints is binding in the fractional
solution.

The solution does not change if any 3-,4-,5-,6-cliques are added because their
sums are still less than 1. We can, however, extend the clique inequalities
beyond 6 variables by including touching as a crossing. Start with the 6-
clique inequality:

T16 + Tos5 + T34 + Tyz + Tsg + Te1 < 1.

We can add 15 to this because it crosses all lines and touches 1 (which
is a violation). In fact, we have the following maximal, extended clique
inequality:

Ti6 + Tos + T3a + Tuz + Tso + Te1 + Tis + Toa + T3z + Tao + 51 < 1.

This eliminates the current fractional solution. The technique for finding this
maximal inequality is given by Lancia et al. [59].

6 Epilogue

All of the problems we described are NP-hard, so it is unlikely someone will
produce a practical algorithm that guarantees an optimal solution within a

6 EPILOGUE 40

realistic amount of time. Still, exact methods are important because (a) for
some problems they are applicable to practical problem instances, and (b)
they can be used to benchmark fast heuristics on specific problems. The
multiple sequence alignment problem, for example, has polynomial complex-
ity when the number of sequences to be aligned is fixed. More importantly,
new knowledge of the underlying science can reveal that the dimension of
a problem is much less than we are using. For example, protein folding
might depend on key subsequences of amino acids, rather than on their total
number. Thus, research is needed to improve general branch and bound or
dynamic programming methods by exploiting special problem structure. One
must also be mindful of the underlying biology, questioning whether we are
measuring complexity by the right dimension. This underlies the Levinthal
Paradox [63], which discusses these points in greater detail and is important
to read when getting into this research area.

When the dimensionality is too great to guarantee an exact optimal solu-
tion, there are two approaches: (1) metaheuristics and (2) approximation
algorithms. The former is a skillfully guided set of rules, often based on
some metaphor of nature; the latter gives a guarantee of some percentage
of optimality. Both have been applied to most of the problems discussed
in this paper, but much more is needed. There are many opportunities for
research into the design and analysis of computational methods familiar to
researchers in mathematical programming, coming from an operations re-
search background. Even less has been done with sensitivity analysis and
optimizing under uncertainty.

Finally, we remind the reader that the solution to these types of combinato-
rial problems does not necessarily mean that the related biological problem
is solved. In our examples, the mathematical model defines an abstraction
that emphasizes some particular aspects of the underlying biological system.
For example, many different protein structure prediction problems have been
formulated, each of which emphasizes different aspects of the protein fold-
ing process with different levels of fidelity (e.g., using a simple hydrophobic
model versus a detailed model based on the statistical mechanics of water).
Consequently, the solution to a combinatorial optimization problem often
leads to stimulating discussions with biologists regarding how these results
can be interpreted within a biological context. Further, these discussions
often generate new ideas for combinatorial formulations that might provide
further insight into the underlying problem. In our opinion, this dynamic in-

6 EPILOGUE 41

teraction with biologists is one of the most productive aspects of this research
area, making it also one of the most exciting.

Appendix: Getting Started

Some light reading about computational biology is given by Karp [51]. A
good place to begin a more thorough study is with Ph.D. theses. These have
been carefully reviewed, and the authors have spent a good deal of time to
give background, perspective and complete references. We recommend the
theses by Lancia [57], Backofen [5], and Pedersen [67].

For a gentle introduction to the biology, see Brown [16] or Hunter [47]. Then,
we recommend you study Campbell and Heyer [18]. The number of books
on computational molecular biology have increased since the early entry by
Setubal and Meidanis [73]. For the kinds of problems described here we
recommend Pevzner [68] and Clote and Backofen [26].

The primary journals and proceedings in this field are (findicates free of
cost):

e Bioinformatics http://bioinformatics.oupjournals.org/

e In Silico Biology http://www.bioinfo.de /isb/

e Journal of Computational Biology
http://www.liebertpub.com/CMB /defaultl.asp

o f Proceedings of the Pacific Symposium on Biocomputing
http://psb.stanford.edu/

e Research in Computational Biology Proceedings (RECOMB)
http://www.recomb2003.de/

e Proceedings of the Intelligent Systems for Molecular Biology (ISMB)
http://www.iscb.org/ismb2003/

Links to more journals and resources are at the International Society for
Computational Biology, http://www.iscb.org/, which also contains links to
their symposia proceedings.

6 EPILOGUE 49

The web also contains a wealth of information about computational biology,
molecular biology, and related topics. Here are some suggestions for getting
started.

e Beginners Guide to Molecular Biology, by Eric Martz |9]

This is part of Molecular Biology Notebook Online, which uses RasMol
(a 3D graphics capability under MS Windows). There are 13 lessons,
beginning with a definition of life and ending with molecular engineer-
ing.

e Biology Hypertextbook, from MIT [80]

This is an ongoing project that started in 1996 and has been developed
by many MIT faculty and students. It is divided into 11 chapters,
starting with a chemistry review and ending with immunology. If you
search the index, you will find some untitled modules that indicate
work in progress.

e Primer on Molecular Genetics, by DOE [24]

This was created by the Department of Energy near the beginning of
the Human Genome Project. It is at the level of Scientific American.

Acknowledgments

This work was performed in part at Sandia National Laboratories. Sandia
is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of Energy under con-
tract DE-AC04-94AL185000. Harvey Greenberg thanks Sandia National Lab-
oratories for the opportunity to visit their Computing Research Institute
in 2000, which is where he was introduced to computational biology. We
thank Alberto Caprara for suggesting the simple proof of Theorem 3.1, and
Graziano Pesole for the model presented on p. 18. We thank Naiomi Cameron
Robert Carr, Jonathan Eckstein, Sorin Istrail, Alantha Newman, and Cyn-
thia Phillips for their collaboration developing IP formulations for protein
folding in lattice models (p. 28). Last, we thank three anonymous refer-
ees, as well as Courtney Davis, Allen G. Holder, and Ed Wasil, for detailed
comments and suggestions that made this paper clearer.

REFERENCES 43

References

1]

2]

3]

4]

5]

6]

7]

18]

19]

[10]

C. Andorf, D. Dobbs, and V. Honavar. Discovering protein function
classification rules from reduced alphabet representations of protein se-
quences. Technical report, Department of Computer Science, Iowa State
University, Ames, [A, 2002.

J. Atkins and W. E. Hart. On the intractability of protein folding with
a finite alphabet of amino acids. Algorithmica, 25:279-294, 1999.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approrimation. Com-
binatorial Optimization Problems and their Approximability Properties.
Springer, Berlin, 1999.

L. Babai. Local expansion of vertex—transitive graphs and random gen-

eration in finite groups. In Proceedings of ACM Symposium on Theory
of Computing (STOC), pages 164-174. ACM press, 1991.

R. Backofen. Optimization Techniques for the Protein Structure Predic-
tion Problem. PhD thesis, Ludwig-Maximilians-Universitdt Miinchen,
Institut fiir Informatik, Oettingenstr, Miinchen, FRG, 1999.

D. A. Bader, B. M. Moret, and M. Yan. A linear-time algorithm for
computing inversion distances between signed permutations with an ex-
perimental study. Journal of Computational Biology, 8(5):483-491, 2001.

V. Bafna and P. Pevzner. Genome rearrangements and sorting by re-
versals. SIAM Journal on Computing, 25:272—289, 1996.

V. Bafna and P. Pevzner. Sorting by transpositions. SIAM Journal on
Discrete Mathematics, 11(2):224-240, 1998.

Beginners Guide to Molecular Biology. Institute of Arable Crops
Research, World Wide Web, http://www.iacr.bbsrc.ac.uk/notebook/
courses/guide/, 2000.

B. Berger and T. Leighton. Protein folding in the hydrophobic-
hydrophilic (HP) model is NP-complete. Journal of Computational Bi-
ology, 5(1):27-40, 1998.

REFERENCES 44

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig,
I. Shindyalov, and P. Bourne. The protein data bank. Nucleic Acids
Research, 28:235-242, 2000. The PDB is at http://www.rcsb.org/pdb/.

P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation al-
gorithm sorting by reversals. In Proceedings of Annual European Sympo-
sium on Algorithms (ESA), volume 2461 of Lecture Notes in Computer
Science, pages 200-210. Springer, 2002.

P. Berman and M. Karpinski. On some tighter inapproximability results.
ECCC report no. 29, University of Trier, 1998.

J. Blazewicz, M. Kasrzak, M. Stema, and J. Weglarz. Selected com-
binatorial optimization problems arising in molecular biology. Ricerca
Operativa, 26(80):35-63, 1997.

J. Bower and H. Bolouri, editors. Computational Modeling of Genetic
and Biochemical Networks. MIT Press, Cambridge, MA, 2001.

T. Brown. Genomes. John Wiley & Sons, New York, NY, 1999.

R. Byrd, E. Eskow, A. van der Hoek, and R. Schnabel. Global optimiza-
tion methods for protein folding problems. In P. Pardalos, D. Shalloway,
and G. Xue, editors, Proceedings of the DIMACS Workshop on Global
Minimization of Nonconver Energy Functions: Molecular Conformation
and Protein Folding, DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, pages 29-40, Providence, RI, 1996. American
Mathematical Society.

A. Campbell and L. Heyer. Discovering Genomics, Proteomics, € Bioin-
formatics. Benjamin Cummings, San Francisco, CA, 2002.

A. Caprara. On the tightness of the alternating-cycle lower bound for
sorting by reversals. Journal of Combinatorial Optimization, 3:149-182,
1999.

A. Caprara. Sorting permutations by reversals and Eulerian cycle de-
compositions. SIAM Journal on Discrete Mathematics, 12:91-110, 1999.

A. Caprara and G. Lancia. Experimental and statistical analysis of sort-
ing by reversals. In D. Sankoff and J. H. Nadeau, editors, Comparative

REFERENCES 45

Genomics: Empirical and Analyitical Approaches to Gene Order Dy-
namics, Map Alignment and Evolution of Gene Families, number 1 in
Kluwer Series in Computational Biology, pages 171-183. Kluwer, 2000.

[22] A. Caprara, G. Lancia, and S. Ng. Sorting permutations by reversals
through branch and price. INFORMS Journal on Computing, 13(3):224—
9244, 2001.

[23] H. Carrillo and D. Lipman. The multiple sequence alignment problem in
biology. SIAM Journal of Applied Mathematics, 48(5):1073-1082, 1988.

[24] D. Casey. Primer on Molecular Genetics. U.S. Department of Energy,
World Wide Web, http://www.ornl.gov/hgmis/publicat/primer /intro.
html, 1992.

[25] A. Clark. Inference of haplotypes from PCR—amplified samples of
diploid populations. Molecular Biology Evolution, 7:111-122, 1990.

[26] P. Clote and R. Backofen. Computational Molecular Biology. John Wiley
& Sons, New York, NY, 2000.

[27] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and
M. Yannakakis. On the complexity of protein folding. Journal of Com-
putational Biology, 5(3), 1998.

[28] K. Dill, S. Bromberg, K. Yue, K. Fiebig, D. Yee, P. Thomas, and
H. Chan. Principles of protein folding — a perspective from simple
exact models. Protein Science, 4:561-602, 1995.

[29] K. A. Dill. Theory for the folding and stability of globular proteins.
Biochemistry, 24:1501, 1985.

[30] G. Fuellen. A Gentle Guide to Multiple Alignment. World Wide Web,
http://www.techfak.uni-bielefeld.de/bcd /Curric/MulAli /mulali.html,
1997.

[31] M. Garey and D. Johnson. Computers and Intractability, a Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., San Francisco,
CA, 1979.

[32] The Genome International Sequencing Consortium, Initial sequencing
and analysis of the human genome. Nature, 409:860-921, 2001.

REFERENCES 46

[33] D. Goldman, S. Istrail, and C. Papadimitriou. Algorithmic aspects of
protein structure similarity. In 40th Annual Symposium on Foundations
Of Computer Science (FOCS), pages 512-521. IEEE Computer Society
Press, 1999.

[34] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, NY, 1980.

[35] H. Greenberg. Mathematical Programming Glossary. World Wide Web,
http://www.cudenver.edu/~hgreenbe/glossary/, 1996-2003.

[36] H. Greenberg, R. Bar-Or, L. Lana, C. Miller, T. Morrison, and C. van
Woudenberg. Pathway inference: Computational issues. Mathematics
clinic report, Mathematics Department, University of Colorado at Den-
ver, Denver, CO, 2002. Available at http://www-math.cudenver.edu/
clinic/report.html.

[37] M. Groetschel, L. Lovasz, and A. Schrijver. A polynomial algorithm for
perfect graphs. Annals of Discrete Mathematics, 21:325-356, 1984.

[38] D. Gusfield. Efficient methods for multiple sequence alignment with
guaranteed error bounds. Bulletin of Mathematical Biology, 55:141-154,
1993.

[39] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, Cam-
bridge, UK, 1997.

[40] D. Gusfield. Inference of haplotypes from PCR — amplified samples
of diploid populations: Complexity and algorithms. Technical Report
CSE-99-6, University of California at Davis, Deptartment of Computer
Science, Davis, CA, 1999.

[41] D. Gusfield. A practical algorithm for optimal inference of haplotypes
from diploid populations. In R. Altman, T. Bailey, P. Bourne, M. Grib-
skov, T. Lengauer, I. Shindyalov, L. T. Eyck, and H. Weissig, editors,
Proceedings of the FEighth International Conference on Intelligent Sys-
tems for Molecular Biology (ISMB), pages 183-189, Menlo Park, CA,
2000. AAAT Press.

REFERENCES 47

[42]

[43]

|44]

[45]

[46]

[47]

48]

[49]

[50]

D. Gusfield. XPARAL: Graphical computation of parameterized align-
ments. http://www.cs.ucdavis.edu/~gusfield /xparall/, 2001.

D. Gusfield. Haplotyping by pure parsimony. Technical Report CSE-
2003-2, Department of Computer Science, University of California at
Davis, Davis, CA, 2003.

S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip
(polynomial algorithm for sorting signed permutations by reversals).
In Proceedings of ACM Symposium on Theory of Computing (STOC),
pages 178-189. ACM press, 1995 (full version appeared in Journal of the
ACM 46, 1-27, 1999).

W. E. Hart and S. Istrail. Lattice and off-lattice side chain models of
protein folding: Linear time structure prediction better than 86% of
optimal. Journal of Computational Biology, 4(3):241-259, 1997.

W. E. Hart and S. Istrail. Robust proofs of NP-hardness for protein fold-
ing: General lattices and energy potentials. Journal of Computational
Biology, 4(1):1-20, 1997.

L. Hunter. Molecular biology for computer scientists. In L. Hunter, edi-
tor, Artificial Intelligence & Molecular Biology, pages 1-46, Cambridge,
MA, 1993. MIT Press. Available at http://www.aaai.org//Library/
Books/Hunter /hunter.html.

T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life:
Systems biology. Annual Reviews of Genomics and Human Genetics,
2:343-372, 2001.

T. Jiang, E. Lawler, and L. Wang. Aligning sequences via an evolu-
tionary tree: Complexity and approximation. In Proceedings of Annual
ACM Symposium on Theory of Computing (STOC), pages 760-769, New
York, NY, 1994. ACM.

H. Kaplan, R. Shamir, and R. E. Tarjan. Faster and simpler algorithm
for sorting signed permutations by reversals. In Proceedings of the An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
344-351, New York, NY, 1997. ACM press.

REFERENCES 48

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

R. Karp. Mathematical challenges from genomics and molecular biology.
Notices of the American Mathematical Society, 49(5):544-553, 2002.

J. Kececioglu and R. Ravi. Of mice and men: Algorithms for evolution-
ary distances between genomes with translocation. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
604613, New York, NY, 1995. ACM Press.

J. Kececioglu and D. Sankoff. Exact and approximation algorithms for
sorting by reversals, with application to genome rearrangement. Algo-
rithmaica, 13:180-210, 1995.

M. Khimasia and P. Coveney. Protein structure prediction as a hard
optimization problem: The genetic algorithm approach. In Molecular
Simulation, volume 19, pages 205226, 1997.

N. Krasnogor, P. M. Lopez, E. de la Canal, and D. Pelta. Simple models
of protein folding and a memetic crossover. In Fzposed at INFORMS
CSTS, Computer Science and Operations Research: Recent Advances in
the Interface meeting, 1998.

N. Krasnogor, D. Pelta, P. M. Lopez, P. Mocciola, and E. de la Canal.
Genetic algorithms for the protein folding problem: A critical view. In
E. Alpaydin and C. Fyfe, editors, Proceedings of Engineering of Intelli-
gent Systems. ICSC Academic Press, 1998.

G. Lancia. Optimization Problems in Computational Molecular Biol-
ogy. PhD thesis, Graduate School of Industrial Administration, Carnegie
Mellon University, Pittsburgh, PA, 1997.

G. Lancia, V. Bafna, S. Istrail, R. Lippert, and R. Schwartz. SNPs
problems, complexity and algorithms. In Proceedings of Annual Euro-
pean Symposium on Algorithms (ESA), volume 2161 of Lecture Notes in
Computer Science, pages 182-193. Springer, 2001.

G. Lancia, R. Carr, B. Walenz, and S. Istrail. 101 optimal PDB struc-
ture alignments: A branch-and-cut algorithm for the maximum contact
map overlap problem. In Proceedings of the Fifth Annual International

Conference on Computational Biology, pages 193-202, New York, NY,
2001. ACM Press.

REFERENCES 49

[60] K. Lau and K. Dill. A lattice statistical mechanics model of the con-
formational and sequence spaces of proteins. Macromolecules, 22:3986—
3997, 1989.

[61] R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. Algorithmic strategies
for the SNPs haplotype assembly problem. Briefings in Bioinformatics,
3(1):23-31, 2002.

[62] A. Neumaier. Molecular modeling of proteins and mathematical predic-
tion of protein structure. SIAM Review, 39:407—-460, 1997.

[63] J. Ngo, J. Marks, and M. Karplus. Computational complexity, protein
structure prediction, and the Levinthal paradox. In K. Merz, Jr. and
S. L. Grand, editors, The Protein Folding Problem and Tertiary Struc-
ture Prediction, chapter 14, pages 433-506. Birkhé&user, Boston, MA,
1994.

[64] C. Notredame and D. Higgins. SAGA: sequence alignment by genetic
algorithm. Nucleic Acids Research, 24(8):1515-1524, 1996.

[65] R. Nussinov, B. Ma, and H. Wolfson. Computational methods for dock-
ing and applications to drug design: Functional epitopes and combina-
torial libraries. In T. Jiang, Y. Xu, and M. Zhang, editors, Current

Topics in Computational Molecular Biology, pages 502-524, Cambridge,
MA, 2002. MIT Press.

[66] A. Patton, W. Punch, and E. Goodman. A standard GA approach to
native protein conformation prediction. In L. Eshelman, editor, Pro-
ceedings of the Sixth International Conference on Genetic Algorithms,
pages 574-581. Morgan Kauffman, 1995.

[67] C. Pedersen. Algorithms in Computational Biology. PhD thesis, De-
partment of Computer Science, University of Aarhu, Denmark, 1999.
available at http://www.brics.dk/~cstorm/.

|68] P. Pevzner. Computational Molecular Biology. MIT Press, Cambridge,
MA, 2000.

[69] A. Piccolboni and G. Mauri. Application of evolutionary algorithms
to protein folding prediction. Lecture Notes in Computer Science,
1363:123-136, 1998.

REFERENCES 20

[70] A. A. Rabow and H. A. Scheraga. Improved genetic algorithm for the
protein folding problem by use of a cartesian combination operator. Pro-
tein Science, 5:1800-1815, 1996.

[71] R. Rizzi, V. Bafna, S. Istrail, and G. Lancia. Practical algorithms and
fixed-parameter tractability for the single individual SNP haplotyping
problem. In R. Guigo and D. Gusfield, editors, Proceedings of 2nd An-
nual Workshop on Algorithms in Bioinformatics (WABI), volume 2452
of Lecture Notes in Computer Science, pages 29-43. Springer, 2002.

[72] D. Sankoff, R. Cedergren, and Y. Abel. Genomic divergence through
gene rearrangement. In Molecular Evolution: Computer Analysis of
Protein and Nucleic Acid Sequences, pages 428-438, Reading, M A, 1990.
Academic Press.

[73] J. Setubal and J. Meidanis. Introduction to Computational Molecular
Biology. Brooks/Cole, Pacific Grove, CA, 1997.

[74] R. Unger and J. Moult. A genetic algorithm for 3D protein folding
simulations. In Proceedings of the Fifth Annual International Conference
on Genetic Algorithms, pages 581588, 1993.

[75] R. Unger and J. Moult. A genetic algorithm for three dimensional pro-
tein folding simulations. In Proc 5th Intl Conf on Genetic Algorithms,
pages 581-588. Morgan Kaufmann, 1993.

[76] R. Unger and J. Moult. Genetic algorithms for protein folding simula-
tions. Journal of Molecular Biology, 231(1):75-81, 1993.

[77] J. Venter et al. The sequence of the human genome. Science, 291:1304-
1351, 2001.

[78] L. Wang and T. Jiang. On the complexity of multiple sequence align-
ment. Journal of Computational Biology, 1:337-348, 1994.

[79] L. S. Wang and T. Warnow. Estimating true evolutionary distances
between genomes. In Proceedings of Annual ACM Symposium on Theory
of Computing (STOC), pages 637-646, New York, NY, 2001. ACM.

[80] L. Willis, editor. Biology Hypertextbook. Massachusetts Institute of
Technology, http://esg-www.mit.edu:8001 /esgbio/, 2000.

REFERENCES o1

[81] K. Yue and K. A. Dill. Sequence-structure relationships in proteins and
copolymers. Physics Review E, 48(3):2267-2278, 1993.

[82] K. Yue and K. A. Dill. Forces of tertiary structural organization in
globular proteins. Proceedings National Academy of Sciences (USA),
92:146-150, 1994.

