Ensuring the Semantic Correctness
of Complex Regions

Mark McKenney, Alejandro Pauly, Reasey Praing, & Markus Schneider*

University of Florida
Department of Computer and Information Sciences and Engineering
{mm7,apauly,rpraing,mschneid}@cise.ufl.edu

Abstract. Ensuring the semantic and topological correctness of spatial
data is an important requirement in geographical information systems
and spatial database systems in order to preserve spatial data quality and
enable correct operation execution. Spatial objects like complex regions
are usually represented as an ordered sequence of segments (sequence
view) to support and ease the computation of spatial operations by means
of plane sweep algorithms. The semantic correctness of such a sequence
is usually simply assumed but is not easy to see. In this paper, we present
a novel and efficient algorithm to discover the cyclic structure and check
for the semantic correctness of the sequence representation of a complex
region by determining its cyclic structures (component view) in terms
of multiple faces possibly containing holes. The algorithm producing the
component view is also interesting for object construction, manipulation,
and visualization.

1 Introduction

The study of spatial objects and spatial operations has received widespread
attention in varied fields such as computational geometry, spatial databases,
geographic information science (GIS), computer-aided design, computer vision,
and computer graphics. A large amount of the research these areas has focused
on the representation and manipulation of spatial objects for use in spatial sys-
tems. Within this research, the type of complex regions has received significant
attention due to their ability to model many aspects of geographic reality. A
complex region a is two-dimensional spatial object consisting of multiple faces,
each of which can contain a number of holes.

Because of the varied uses of complex regions in spatial systems (as well as
other complex data types such as points and lines), two forms of representation
have emerged to store and manipulate them. The first form of representation
is the sequential view of a complex region, which treats a complex region as
an ordered sequence of segments. This view has become popular because it is
used as an input and output format for many spatial algorithms, specifically

* This work was partially supported by the National Science Foundation under grant
number NSF-CAREER-IIS-0347574.

plane sweep algorithms, used to implement spatial operations and topological
predicates. The main drawback to this view is that the structural components
of a complex region (i.e., the faces and holes) are not explicitly represented.
The second form of representation for complex regions is the component view, in
which the segments of the region are grouped by the structural components of
the region; in other words, the segments that form a hole or face are grouped to-
gether. The component view is typically used to create, manipulate, or visualize
a complex region, because its cyclic structure (i.e., the holes and faces) is known
and can be utilized. For example, if a user wants to remove a face from a region,
then the segments that make up that face, as well as the segments that make
up any holes in that face, must be identified and removed. Such information is
explicitly encoded in the component view.

The study of spatial data quality has received significant attention in the
field of spatial data. An important problem in this field is to determine if a
given spatial object is valid in the sense that it conforms to the spatial object’s
type definition. In the case of complex regions, we need to know if the object
defined by a set of segments is semantically and topologically correct. If a com-
plex region is defined based on the component view, then the cyclic structure of
the region is known. Therefore, this can be validated, and the topological con-
straints that the faces and holes must satisfy can be checked. However, given a
region represented in the sequential view, the cyclic structure must be computed
explicitly. Currently, there are no known algorithms to compute this information
in an efficient manner.

At this point it is important to note that the two views of region representa-
tion can be merged into a hybrid view in which segments are ordered sequentially
and annotated with cyclic information. Thus, this view allows input to spatial
operations and explicitly encodes cyclic information so that semantic correctness
can be checked. However, such a view cannot be maintained through spatial op-
erations. In other words, even if the cyclic structure of two regions is known, the
cyclic structure of their intersection cannot be computed based on the known
structure of the original regions. This means that even though the input to an
intersection operation is two regions in the hybrid view, the output is a region
in the sequential view; thus the cyclic structure must still be computed. This
holds for the intersection, union, and difference operations between regions.

The main contribution of this paper is an efficient algorithm that takes a
region represented in the sequential view as input and returns the region in
a component view as output. Thus, given a region in the sequential view, we
are able to discover its cyclic structure. As we mentioned before, the need to
validate a region, or ensure that it is semantically and topologically correct, is
an important concern in spatial data management. In addition to finding the
cyclic structure of a region, our algorithm simultaneously checks that the region
is semantically and topologically correct. Therefore, this algorithm eliminates
the need to store a region in the component view because regions can quickly
be validated based on our algorithm, and the component view can be quickly
computed. This allows regions to be stored in the sequential view, which is more

compact than the hybrid view and is typically easier to manage on disk than the
component view.

In Section 2, we present existing work related to our problem. Section 3
introduces the formal definition of regions upon which our problem solution is
based. Our algorithm for deriving the component view of regions is presented in
Section 4. Section 5 describes the time complexity of the algorithm. Finally, in
Section 6 we provide conclusions and outline future work.

2 Related Work

To the authors’ knowledge, no previous publication includes a plausible solution
to the problem we have introduced in the previous section. Instead, plenty of
literature exists that explores problems for which solutions can provide us with
important insight for solving our problem.

The well known plane sweep algorithmic technique for geometric intersection
problems, original to Shamos and Hoey [9] and also popularly employed by
Bentley and Ottmann [4] as well as many others [7, 3], serves as a basis for our
solution. The plane sweep model proves useful in identifying properties of the
segments that are critical for efficiently solving our problem.

Related problems of arrangements of lines and segments are presented in [1,
2,5]. Such an arrangement consists of a partitioning of the space such that the
lines or segments do not cross the boundaries of the partitions. Computation of
planar maps to detect polygons from sets of segments are studied in [6]. The
authors provide a solution to the problem of detecting the polygons formed
by a set of intersecting segments. That is, each polygon detected is defined by
three or more pairwise intersections of segments. This problem is fundamentally
different to our problem in that (1) there are no restrictions on the polygons
that are detected, (2) in our problem we must consider holes and outer cycles
separately, and (3) all holes and outer cycles must adhere to the definition of
complex regions.

3 Complex Regions

In this section, we are interested in the implementation model of the region
data type. To simplify our discussion, we define the implementation data type of
complex regions based on segments. Then, we modify this definition such that
it is based on halfsegments, which allows processing of region objects in spatial
predicates and operations. In order to define a complex region, we first define the
required concepts such as points, segments, polygons, and faces. Due to space
limitations, we can only provide an informal definition of these concepts. For a
formal definition, see [8].

The type point includes all single, two dimensional points. We assume that
the equality “=" relation and the lexicographic order relation “<” are defined be-
tween any two points. The type segment incorporates all straight lines bounded
by two endpoints p and q. We make use of the predicates disjoint, collinear :

s

(@) (b) (c) (d) (e)
Fig. 1. Regions (a) and (b) consist of a single face. Regions (c) and (d) each have two
faces. Region (e) is a single face and is annotated to identify its individual segments.

segment X segment — bool to determine whether two segments are disjoint or are
located on the same infinite lines, respectively. A function len : segment — real
computes the length of a segment. These operations are required to define the
order relation of halfsegments which are defined later. Using segments, a simple
polygon can be implemented as a connected sequence of segments that forms a
single cycle. We say that two simple polygons are edge-disjoint if their interiors
are disjoint and they possibly share single boundary points but not boundary
segments. A face is a simple polygon possibly containing a set of edge-disjoint
holes, which are simple polygons, such that these holes do not collectively sep-
arate the interior of the face. A complex region is a set of edge-disjoint faces.
Figure 1 shows some example regions.

Although the formal definition of region in [8] ensures uniqueness of represen-
tation for complex regions, in some cases, it is not obvious if a set of segments
forms a hole cycle, or if the segments should be part of an outer cycle of a
face. Furthermore, certain configurations of faces and holes form non-intuitive
scenarios. For example, Figure 1(b) forms a face containing a hole, and not a
single face that happens to meet itself at a point. Figure 1(c) depicts two faces
that meet at four points, but contain no holes. Figure 1(d) shows two faces,
the larger one containing a hole. The uniqueness of representation of complex
regions is critical because given a sequence of segments, there is exactly one
valid semantic interpretation of the cyclic structure of the region it represents.
Our algorithm in Section 4 correctly interprets any valid region described as a
sequence of segments.

Spatial operation implementations between regions based on the plane sweep
algorithm require input to be a region encoded not as a sequence of segments,
but as a sequence of halfsegments. We define the type halfsegment = {(s,d)|s €
segment,d € bool}. A halfsegment is a hybrid between a point and a segment
since it has features of both geometric structures. For a halfsegment h = (s, d), if
d is true (false), the smaller (greater) endpoint of s is the dominating point of h,
and h is called a left (right) halfsegment. Hence, each segment s is mapped to two
halfsegments (s, true) and (s, false). Furthermore, halfsegments are typically
annotated with an interior-above flag, which indicates whether the interior of the
region lies above or below the halfsegment. In addition to the use of halfsegments,
the representation of a region object requires an order relation on halfsegments.
Let dp be a function which yields the dominating point of a halfsegment. For two
distinct halfsegments h; = (s1,d1) and he = (s2, d2) with a common endpoint p,

let « be the enclosed angle such that 0° < o < 180°. Let a predicate rot(h, ha)
be true if, and only if, h; can be rotated around p through « to overlap hsy in
counterclockwise direction. We define a complete order on halfsegments as:

hi1 < hy &

dp(h1) < dp(hs) V (1)

(dp(hl) = dp(hg) A\ ((ﬁdl A\ dg) V (2&)
(dl =ds A TOt(hl,hz)) V (2b)
(dh =da A collinear(si, s2) A len(s1) <len(sz2)))) (3)

Since a segment can be substituted by two halfsegments, a region object can
be implemented as an ordered sequence (array) of halfsegments. As an example,
Figure 1(e) shows a complex region object (with a single face containing a hole)
whose segments are labeled s;. Let h! = (s;,true) and hl = (s;, false) denote
the left and right halfsegments of a segment s; respectively. The order sequence of
halfsegments for this complex region is (h!, hl, hé, Ry, by, hl5, hy, hlg, h%, hi, hE, hY).

4 Computing the Cyclic Structure of Complex Regions

We assume that the input to our algorithm is a sequence of ordered halfseg-
ments. If the input represents a region, the algorithm returns the region with its
cyclic structure information; otherwise, the algorithm exits with an error mes-
sage indicating the input sequence does not form a semantically correct region.
We begin by providing a high level overview of the algorithm and then present
the algorithm and provide a discussion of its details.

In general terms, the algorithm must identify all cycles present in the half-
segment sequence, and classify each cycle as either an outer cycle or a hole cycle
of a particular face. To accomplish this, each halfsegment is visited once by the
algorithm. Note that due to the definition of the type region, each segment be-
longs to exactly one cycle. When a halfsegment is visited, the algorithm marks
the halfsegment indicating to which face and cycle it belongs, and whether that
cycle is an outer cycle or a hole cycle. The algorithm does not alter the input
when marking halfsegments, rather a parallel array to the input sequence is used
to represent the cycle information. The algorithm visits halfsegments by stepping
through the input list sequentially.

The first halfsegment in the input sequence will always be part of the outer
cycle of a face, due to the definition of complex regions and the halfsegment
ordering defined previously. Therefore, it can be visited and marked correctly.
Once a halfsegment has been visited, it is possible to visit and correctly mark
all other halfsegments in the cycle that it belongs to in a procedure which we
denote as the cycle walk. Thus, all halfsegments that form the cycle to which the
first halfsegment in the input sequence belongs are then visited. The algorithm
then begins stepping through the remaining halfsegments. The next unvisited
halfsegment encountered will be part of a new cycle. The algorithm then visits
this new halfsegment. The algorithm can deduce whether this halfsegment is an

outer cycle of a new face or a hole in an existing face by examining where the
halfsegment lies in relation to already known cycles. To determine this, we use
a plane sweep algorithm to step through the halfsegments. Thus, we can take
advantage of the plane sweep status structure to find whether or not the current
halfsegment lies in the interior of a previously visited face. Once the new halfseg-
ment is visited, we perform a cycle walk from it. Then, the algorithm continues
stepping through the input list until it reaches another unvisited halfsegment,
visits it, and repeats this procedure. The algorithm is shown in Algorithm 1.

To properly describe the algorithm outlined in Algorithm 1, we introduce
several notations. The function info(h) for a given halfsegment h returns its
cyclic information, that is, its owning cycle, and if part of a hole, its owning
face. A cycle owns a halfsegment if the halfsegment is part of the boundary of
the cycle, and a face owns a hole if the hole is inside the face. We define the
function NewCycle(h) to annotate h with a unique identifier for a new cycle.
Let f be a halfsegment belonging to an outer cycle of a face. The function
Owns(h, f) annotates the halfsegment h to indicate that it belongs to a hole in
the face that owns f. Finally, we employ the function Visit(p) to mark a point
p as having been visited. The function Visited(p) is used to verify is point p was
marked as visited already. Points are only marked as visited when a halfsegment
with dominating point p has been visited during the cycle walk. We mark points
as being visited in order to identify the special case of a hole cycle that meets
the outer cycle of a face at a point. The function Visited(h) is used to verify
if halfsegment h has been visited already. A halfsegment has been visited if it
has been annotated with face/hole information. For a halfsegment h, we can
directly compute its corresponding right (left) halfsegment h;, which we call its
brother by switching its boolean flag indicating which end point is dominant. We
define the next halfsegment in the cycle to which h belongs as hy such that the
dominating endpoint of h; is equal to the dominating point dp(h4) and hy # hy
and hy is the first halfsegment encountered when rotating hy clockwise (in an
outer cycle) or counter-clockwise (in a hole cycle) around its dominating point.
The previous halfsegment in the cycle is similarly defined as h_.

4.1 Classifying Outer and Hole Cycles

By using a sweep line, the algorithm steps through the halfsegment sequence
to find the smallest unannotated halfsegment h, create a new cycle for this
halfsegment, and mark its dominating point as visited (line 2-4). At this point,
the algorithm needs to determine whether h belongs to a hole cycle (line 5) or
an outer cycle (line 9). If a cycle is identified as a hole cycle, the outer cycle to
which it belongs must also be identified (line 6-7), and the cycle must be walked
using counter-clockwise adjacency of halfsegments (line 8). Recall that the plane
sweep algorithm maintains the sweep line status structure, which is a ordered list
of active segments, such that it provides a consistent view of all halfsegments
that currently intersect the sweep line, up to the current event (the addition
or removal of a halfsegment). By examining the halfsegment directly below a
halfsegment h in the sweep line status, we can determine whether h is a part of

Algorithm 1: The algorithm for deriving the component view of a region.

Input: Sequence of unannotated halfsegments H
Output: Sequence H with fully annotated halfsegments

1 while not end of sweep do
2 Advance sweep line to h. h is the left-most halfsegment yet to be annotated;
3 Using sweep line status, determine h as part of an outer cycle or a hole cycle;
4 NewCycle(h); Visit(dp(h));
5 if h belongs to a hole then
6 Using sweep line status, retrieve halfsegment f from its owning outer cycle;
7 Owns(h, f);
8 Set cycle walk mode to use counter-clockwise adjacency;
9 else
10 | Set cycle walk mode to use clockwise adjacency;
11 end
/* Begin walking the cycle */
12 c«— hy;
13 while ¢ # h do
14 if Visited(dp(c)) then
15 q < ¢; ¢ — c—; NewClycle(c); Owns(c, h);
16 while dp(c) # dp(q) do
/* Trace back anchored hole */
17 info(c—) «— info(c); ¢ — c—;
18 end
19 else
20 | info(c) « info(h); Visit(dp(c)); ¢ «— c4;
21 end
22 end
23 end

an outer cycle or a hole cycle of an existing face. In other words, if halfsegment p
is directly below halfsegment h in the sweep line status structure and the interior-
above flag of p is set to true, it follows that h is either in the interior of the cycle
to which p belongs, or h is part of the cycle to which p belongs. Recall that as
soon as a halfsegment is classified as being apart of a hole or face, the cycle to
which it belongs is walked (Section 4.2) and all other halfsegments in that cycle
are marked accordingly (lines 12-22). Therefore, if a halfsegment belongs to the
same cycle as any halfsegment that has been previously encountered by the sweep
line, it is already known to which face and/or hole cycle it belongs. Furthermore,
all halfsegments that are less than a given halfsegment in halfsegment order have
already been classified. Therefore, we can determine if an unmarked halfsegment
belongs to a hole or outer cycle by examining the halfsegment immediately below
it in the sweep line status structure.

From the definition of a face, the outer cycle of a face of a region always covers
(encloses) all of its hole cycles. This means that the smallest halfsegment of this
face is always a part of the outer cycle. This is also true for the entire region
object where the smallest halfsegment in the ordered sequence is always a part
of the first outer cycle of the first face. Furthermore, due to the order relation
of halfsegments and the cyclic structure of a polygon, the smallest halfsegment
of a face will always be a left halfsegment with the interior of the face situated
above it. Thus, when we process this halfsegment, we set its interior-above flag
to indicate this fact. Since we have classified this cycle as an outer cycle, we can
walk the cycle and set the interior-above flag for all halfsegments of this cycle.

status status

&l ©H
k|lial

k hlia k ia

(a) (b)

Fig. 2. Processing the smallest halfsegment h of the sequence (a) and k of a cycle (b).

For example, Figure 2(a) illustrates the case where the smallest halfsegment of
the sequence is processed and the cycle is classified as an outer cycle.

Once the first outer cycle of a face in a region has been processed, we continue
to process halfsegments that have not yet been classified based on the plane
sweep status structure. Figure 2(b) shows an example. Here, we add/remove
visited halfsegments into/from the sweep line status in sequence ordered up to
the smallest unvisited halfsegment k. This halfsegment must be the start of a
new cycle that we must now classify. We know k is the start of a new cycle
because all halfsegments of an existing cycle that include a halfsegment j such
that j < k must have been marked as visited by the walking process. Once
we reach this new cycle represented by its starting halfsegment k, we add this
halfsegment into the sweep line status. We classify the type of cycle k belongs
to by examining the interior-above flag of the halfsegment p (its predecessor)
which was already visited and sits immediately below k in the sweep line status
structure. If the predecessor indicates that the interior of the face is above it
(the interior-above attribute of p is set to true), then & lies in the interior of the
cycle to which p belongs; thus, £ must be part of a hole cycle and the interior
of the face to which k belongs must lie below k. If the interior-above flag of p
indicates that the interior of the face to which p belongs is below p, then the
current halfsegment & must be part of an outer cycle of a new face. In case that
there is no predecessor, then the current halfsegment must be a part of an outer
cycle of a new face, because it does not lie in the interior of any other face’s
outer cycle. Once the cycle is classified as either an outer cycle of a new face
or a hole cycle of an existing face, the cycle walking procedure is carried out to
determine all halfsegments that belong to the cycle.

4.2 Walking Cycles

In general terms, we use the phrase walking a cycle to indicate the traversal of
a cycle such that each halfsegment that forms the cycle is visited. Furthermore,
the halfsegments in such a traversal are visited in the order in which they appear
in the cycle. In other words, given a halfsegment h, all halfsegments in the cycle
to which h belongs are found by repeatedly finding hy until the the original
halfsegment is encountered again. For example, when walking the outer cycle of
the region in Figure le in clockwise order beginning from S7, the halfsegments
would be encountered in the order hll, 1, hE, hlg, 5 hl2. The two main challenges
to this portion of the algorithm are (i) to identify cycles correctly such that they
correspond to the unique representation of a region as stated in the definition of

complex regions, and (ii) to achieve this efficiently. In this section we show how
to satisfy the first challenge. Time complexity is discussed in the next section.

When a halfsegment h is encountered by the algorithm that has not yet
been classified, it is classified as belonging to a hole or outer cycle in line 5.
If h belongs to an outer cycle, then the cycle walk portion of the algorithm in
lines 12-22 is executed. Due to the halfsegment ordering and the definition of
regions, the smallest unvisited halfsegment in the input sequence that the plane
sweep encounters is always a left halfsegment of an outer cycle of a face and the
interior of that face always lies above the halfsegment. If we rotate h; clockwise
around its dominating point, it will intersect the interior of the face. Thus, the
first halfsegment encountered when rotating h; clockwise around its dominating
point will be part of the outer cycle of the same faces (except for a special case
discussed below) and will be h. We know this to be true because if we find h4
in this fashion and it turns out to be part of another face, then two faces would
intersect, which is prohibited by the definition of complex regions. It follows
that each successive halfsegment in the outer cycle can be found by rotating
the brother of the current halfsegment clockwise around its dominating point
because the location of the interior relative to the halfsegment can always be
deduced based on the previous halfsegment encountered in the cycle walk.

One special case occurs when walking outer cycles: the existence of a hole in
a face that meets the outer cycle at a point (see Figure 1b). When walking an
outer cycle that contains such a hole, the halfsegments that form the hole will
be classified as being part of the outer cycle using the procedure just described.
In order to remedy this, we mark each point that is a dominating point of a
halfsegment encountered during the cycle walk (line 20). Each time we find a
new halfsegment that is part of an outer cycle, we first check if its dominating
point has been visited yet (line 14). If it has been visited, then we know that
we have encountered that point before, and a hole cycle that meets the outer
cycle must have been discovered. When this happens, we loop backwards over
the cycle until we find the halfsegment whose dominating point has been visited
twice (lines 15-18). The halfsegments forming the hole are then marked as such.
The remainder of the outer cycle is then walked.

Walking a hole is identical to walking an outer cycle, except that a counter-
clockwise rotation from h; is used to find hy. A counter-clockwise rotation is
required because the interior of the face is intersected by h, when rotating hy
around its dominating point. When walking holes, the special case exists that
two holes may meet at a point. Thus, we employ the same strategy to detect
this case as we did with the special case of a hole meeting a face (lines 15-18).

5 Complexity

The classification component of our algorithm requires the use of a plane sweep
algorithm over n halfsegments; thus, a complexity of O(nlog(n)) is required.
However, because a segment intersection indicates an invalid region, we do not
need to compute or report intersections, and thus do not require an output

sensitive algorithm. The cycle walk algorithm requires that we locate a half-
segment based on its dominating point in a list of halfsegments. Because the
list of halfsegments is ordered, it is possible to employ a searching technique
to locate halfsegments quickly. If the list of halfsegments is implemented as an
array, we can simply use a binary search. Because each halfsegment is searched
for one time in this stage of the algorithm, the cycle walk can be computed in
O(nlog(n)) time for n halfsegments. Furthermore, once a halfsegment has been
classified, it will at most be visited one additional time by the sweep line portion
of the algorithm. Finally, it is possible to keep track of the number of times a
point has been visited in an ordered array. Thus, we can rely on a binary search
to find points in order to mark them as visited. The number of points is bounded
by the number of halfsegments, thus, this has complexity at most O(nlog(n)).
Therefore, the algorithm has a worst case time complexity of O(nlog(n)).

6 Conclusions

In this paper we have introduced an O(nlog(n)) algorithm for computing the
component view of a complex region originally represented by a sequence of half-
segments. Furthermore, the algorithm checks the semantic correctness of region
objects since it will not be able to compute the component view of a halfseg-
ment sequence that does not represent a region. The algorithm was successfully
implemented as part of a spatial algebra that was embedded into an existing
database management system for the purpose of managing spatial data.

References

1. N. M. Amato, M. T. Goodrich, and E. A. Ramos. Computing Faces in Segment
and Simplex Arrangements. In ACM Symposium on Theory of Computing, pages
672-682. ACM Press, 1995.

2. T. Asano, L.J. Guibas, and T. Tokuyama. Walking on an Arrangement Topolog-
ically. In ACM Annual Symp. on Computational Geometry, pages 297-306. ACM
Press, 1991.

3. 1. J. Balaban. An Optimal Algorithm for Finding Segments Intersections. In ACM
Annual Symp. on Computational Geometry, pages 211-219. ACM Press, 1995.

4. J.L. Bentley and T. Ottmann. Algorithms for Reporting and Counting Geometric
Intersections. IEEE Trans. on Computers, C-28:643-647, 1979.

5. H. Edelsbrunner, L. J. Guibas, and M. Sharir. The Complexity of Many Faces
in Arrangements of Lines of Segments. In ACM Annual Symp. on Computational
Geometry, pages 44-55. ACM Press, 1988.

6. A. Ferreira, M. J. Fonseca, and J. A. Jorge. Polygon Detection from a Set of Lines.
In Encontro Portugues de Computacao Grafica, pages 159-162, 2003.

7. J. Nievergelt and F. P. Preparata. Plane-Sweep Algorithms for Intersecting Geo-
metric Figures. Communications of the ACM (CACM), 25:739-747, 1982.

8. M. Schneider and T. Behr. Topological Relationships between Complex Spatial
Objects. ACM Trans. on Database Systems (TODS), 31:39-81, 2006.

9. M. Shamos and D. Hoey. Geometric Intersection Problems. In IEEE Symp. on
Foundations of Computer Science, 1976.

